Math, asked by rajpalsingh123, 1 year ago

if a and b are rational numbers and 4+3√5/4-3√5=a+b√5 find the value of a and b

Answers

Answered by SerenaBochenek
2

Answer:

\text{The values of a and b are 4 and }\frac{-9}{4}

Step-by-step explanation:

Given if a and b are rational numbers and

4+\frac{3\sqrt5}{4}-3\sqrt5=a+b\sqrt5

4+\frac{3\sqrt5}{4}-3\sqrt5=a+b\sqrt5\\\\\text{Taking square root of 5 common from last two terms}\\\\4+\sqrt5(\frac{3}{4}-3)=a+b\sqrt5\\\\4+\sqrt5(\frac{3-12}{4})=a+b\sqrt5\\\\4+(\frac{-9}{4})\sqrt5=a+b\sqrt5

Comparing both sides, we get

a=4 and b=\frac{-9}{4}

Answered by Anonymous
12

\textbf{\underline{\underline{According\:to\:the\:Question}}}

\tt{\rightarrow\dfrac{4+3\sqrt{5}}{4-3\sqrt{5}}}

\tt{\rightarrow\dfrac{4+3\sqrt{5}}{4-3\sqrt{5}}\times\dfrac{(4+3\sqrt{5})}{(4+3\sqrt{5})}}

\tt{\rightarrow\dfrac{(4+3\sqrt{5})^{2}}{4^2-(3\sqrt{5})^{2}}}

\tt{\rightarrow\dfrac{(4+3\sqrt{5})^{2}}{(16-45)}}

\tt{\rightarrow\dfrac{(4+3\sqrt{5})^{2}}{-29}}

\tt{\rightarrow\dfrac{4^2+(3\sqrt{5})^2+2\times 4\times 3\sqrt{5}}{-29}}

\tt{\rightarrow\dfrac{16+45+24\sqrt{5}}{-29}}

\tt{\rightarrow\dfrac{(61+24\sqrt{5})}{-29}}

\tt{\rightarrow -(\dfrac{61}{29})+(-\dfrac{24}{29})\sqrt{5}}

\tt{\rightarrow\dfrac{4+3\sqrt{5}}{4-3\sqrt{5}=a+b\sqrt{5}}}

\tt{\rightarrow -(\dfrac{61}{29})+(-\dfrac{24}{29})\sqrt{5}}

\tt{\rightarrow a=-\dfrac{61}{29}\;and\;b=-\dfrac{24}{29}}

Similar questions