Math, asked by charulupadhyay, 1 year ago

if A and B are rational numbers and 4 - 3 root 5 upon 4 + 3 root 5 = a + b root 5, find the values of a and b

Answers

Answered by HappiestWriter012
28
 \frac{4 - 3 \sqrt{5} } {4 + 3 \sqrt{5} } = a + b \sqrt{5}

Multiplying by 4-3√5

(4-3√5)²/4²-(3√5)²

= 16+45-24√5/16-45


= 61-24√5/29

= 61/29 - 24/29√5

= a + b√5

So now a = 61/29 , b = -24/29

charulupadhyay: I cant understand ur answer
HappiestWriter012: see now
charulupadhyay: Ok thanks
Answered by Anonymous
6

Answer:

a = 61/-29

b = 24/-29

Step-by-step explanation:

We have ,

 =  >  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }

 =  >  \frac{4 + 3 \sqrt{5} }{(4 - 3 \sqrt{5}) }  \times \frac{(4 + 3 \sqrt{5} )}{(4 + 3 \sqrt{5}) }

 =  >  \frac{(4 + 3 \sqrt{5})^{2}  }{(4)^{2} - (3 \sqrt{5})^{2}   }

 =  >  \frac{16 + 45 + 2 \times 4 \times 3 \sqrt{5} }{16 - 45}

 =  >  \frac{61 + 24 \sqrt{5}  }{ - 29}  =  \frac{61}{ - 29}  +  \frac{24}{ - 29}  \sqrt{5}

 =  >  \frac{61 + 24 \sqrt{5}  }{ - 29}  =  \frac{61}{ - 29}  +  \frac{24}{ - 29}  \sqrt{5}

4 + 3√5 / 4 - 3√5 = a + b√5

Comparing on both the sides , we get ;

 =  >  \frac{61}{ - 29}   +  \frac{24}{ - 29}  \sqrt{5}  = a   + b \sqrt{5}

 =  > a =  \frac{61}{ - 29}  \: and \: b =  \frac{24}{ - 29}

Similar questions