Math, asked by shivani0987, 1 year ago

if a and b are rational numbers and
4 + 3 \sqrt{5 }   \div 4 - 3 \sqrt{5}  = a + b \sqrt{5}
then find a and b

Answers

Answered by abhi569
8

 =  >  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a + b \sqrt{5}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: By \:  \:  Rationalization ,


 =  >  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4  + 3 \sqrt{5} }   = a  + b \sqrt{5}  \\  \\  \\  \\  =  >  \frac{ {( 4 + 3 \sqrt{5}) }^{2} }{ {4}^{2} -  {(3 \sqrt{5})}^{2}  }   = a + b \sqrt{5}  \\  \\  \\  \\  =  >  \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}  = a + b \sqrt{5}  \\  \\  \\  \\  =  >  \frac{61 + 24 \sqrt{5} }{ - 29}  = a + b \sqrt{5}  \\  \\  \\  \\  =  > \frac{ - 61 - 24 \sqrt{5} }{29}  = a + b \sqrt{5}  \\  \\  \\  \\  =  >  \frac{ - 61}{29}  -  \frac{24 \sqrt{3} }{29}  = a + b \sqrt{5}





On comparing values of both sides , we get that in left hand side -24 is with root 3 and in right hand side b has root 3

So,

- 24 / 29 = b

- 61 / 29 = a
Similar questions