Math, asked by rizwannoushad794, 1 year ago

if a and b are rational numbers and \frac{(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})} = a - b \sqrt{77}. find the value of a and b

Answers

Answered by Anonymous
3

ANSWER:--------

 \rm given :-  \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11} +  \sqrt{7}  }  = a - b \sqrt{77} \\  \\  \rm LHS :  -  \\  \\  \rm =  \frac{ \sqrt{11}  -  \sqrt{7} }{ \sqrt{11} + 7 }  \times  \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11} -  \sqrt{7}  }  \\  \\  \rm =  \frac{ {( \sqrt{11} -  \sqrt{7} ) }^{2} }{ ( \sqrt{11} +  \sqrt{7})( \sqrt{11}   -  \sqrt{7}  ) }  \\  \\  \rm =  \frac{ {( \sqrt{11} )}^{2} - 2( \sqrt{11})( \sqrt{7}  ) +   {( \sqrt{7}) }^{2} }{ {(\sqrt{11}) }^{2} -  {( \sqrt{7} )}^{2} } \\  \\  \rm =  \frac{11 - 2 \sqrt{77} + 7 }{11 - 7}  \\  \\  \rm =  \frac{18 - 2 \sqrt{77} }{4}  =  \frac{9 - 1 \sqrt{77} }{2} \\  \\  \rm on \: comparing \: with \: RHS  :  -  \\  \\  \sf =  >  \frac{9 - 1 \sqrt{77} }{2}  = a - b \sqrt{77}  \\  \\  \sf \therefore  \: a =  \frac{9}{2}   \: and \: b =  \frac{1}{2}

T!–!ANKS!!


rizwannoushad794: thanks
Similar questions