Math, asked by helping53, 6 months ago

if a and b are rational numbers, find a and b √2+√3/3√2+2√3=a+b√6​

Answers

Answered by Bidikha
6

Given -

a \: and \: b \: are \: rational \: numbers \: and \: \\   \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} + 2 \sqrt{3}  }  = a + b \sqrt{6}

To find -

The values of a and b

Solution -

 \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  = a + b \sqrt{6}

By rationalising the denominator,

 \frac{( \sqrt{2} +  \sqrt{3})(3 \sqrt{2} - 2 \sqrt{3}   ) }{(3 \sqrt{2}  + 2 \sqrt{3})(3 \sqrt{2}  - 2 \sqrt{3} ) }  = a + b \sqrt{6}

 \frac{ \sqrt{2} (3 \sqrt{2} - 2 \sqrt{3}) +  \sqrt{3} (3 \sqrt{2} - 2 \sqrt{3}  )  }{ {(3 \sqrt{2} ) }^{2} -  {(2 \sqrt{3}) }^{2}  }  = a + b \sqrt{6}

 \frac{6 - 2 \sqrt{6} + 3 \sqrt{6}   - 6}{18 - 12}  = a + b \sqrt{6}

 \frac{ \sqrt{6} }{6}  = a + b \sqrt{6}

 \sqrt{6}   \times  \frac{1}{6}  = a + b \sqrt{6}

We know that,

Rational number is always equal to other rational numbers and irrational numbers is always equal to other irrational numbers

a =  \frac{1}{6} and \:  \sqrt{6}  = b \sqrt{6} \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   b =1

Therefore the value of a is 1/6 and b is 1

Similar questions