Math, asked by guntashgargi, 2 months ago

if a and b are rational numbers,find the value of a and b in equalities.

pls answer correctly


Attachments:

Answers

Answered by rishu6845
1

Answer:

 \frac{ 5 + 2\sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\ a + b \sqrt{3}  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{(5 + 2 \sqrt{3} ) \: (7 - 4 \sqrt{3}) }{ (7 + 4\sqrt{3} ) \: (7 - 4 \sqrt{3}) }  \\  =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 24 }{ {7}^{2} -  { (4\sqrt{3}) }^{2}  }  \\  =  \frac{11 - 6 \sqrt{3} }{49 - 48}  \\  =  \frac{11 - 6 \sqrt{3} }{1}  \\ a + b \sqrt{3}  =  11 - 6 \sqrt{3}  \\ now \: on \: comparing \\ a = 11and \: b =  - 6

Answered by TheGodWishperer
3

  Answer: \: a \mapsto11 \: and \: b\mapsto \:  - 6

Step-by-step explanation:

For solving such questions multiply numerator and denominator with the number present in denominator by changing its sign or in other words rationalise the denominator

a + b \sqrt{3}  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }

 =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3}  }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

 11 - 6 \sqrt{3}

Additional information

  • always rational denominator in such questions
Similar questions