Math, asked by varunwa2706p, 9 days ago

If 'a' and 'b' are rational numbers, find the value of a and b of V3+v2/v3-v2= a+bv6​

Answers

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

Give expression

 \rm \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  = a + b \sqrt{3}  \\

The denominator is √3 - √2.

We know that

Rationalising factor of a - b = a + b.

So, the rationalising factor of 3-2 = 3+2.

On rationalising the denominator them

 \rm \longrightarrow \:  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\

 \rm \longrightarrow \:  \frac{( \sqrt{3} +  \sqrt{2} )( \sqrt{3}   +  \sqrt{2}) }{ ( \sqrt{3} -  \sqrt{2})( \sqrt{3}   +  \sqrt{2}  )}  \\

Now, applying algebraic identity in denominator because it is in the form of:

(a - b) (a + b) = a² - b²

Where, we have to put in our expression, a = √3 and b = √2.

 \rm \longrightarrow \:  \frac{( \sqrt{3}  +  \sqrt{2})( \sqrt{3}  +  \sqrt{2} ) }{( \sqrt{3}  {)}^{2} - ( \sqrt{2} {)}^{2}   }  \\

 \rm \longrightarrow \:  \frac{( \sqrt{3} +  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}{3 - 2}  \\

 \rm \longrightarrow \:  \frac{( \sqrt{3} +  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}{1}  \\

 \longrightarrow \: ( \sqrt{3}  +  \sqrt{2} )( \sqrt{3}  +  \sqrt{2} ) \\

Now, applying algebraic identity because this term in the form of:

(a + b) (a +b) = a² + 2ab + b²

Where, we have to put in our expression, a = √3 and b = √2.

 \rm \longrightarrow \:  ( \sqrt{3}  +  \sqrt{2}  {)}^{2}  \\

 \rm \longrightarrow \:  ( \sqrt{3}  {)}^{2}  + 2 \sqrt{3 \times 2}  + ( \sqrt{2}  {)}^{2}  \\

 \rm \longrightarrow \:  3 + 2 \sqrt{3 \times 2}  + 2 \\

 \rm \longrightarrow \:  5 + 2 \sqrt{3 \times 2}  \\

 \rm \longrightarrow \:  5 + 2 \sqrt{6}  \\

 \therefore \: 5 + 2 \sqrt{6}  = a + b \sqrt{6}  \\

On comparing with the value of R.HS

we have, a = 5 and b = 2√6 = 2.

Similar questions