Math, asked by viveknandrayog, 8 days ago

if A and B are symmetric matrix then AB+BA

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\sf{A\,\,\&\,\,B\,\,are\,\,symmetric\,\,matrix}

So,

\rm{A^{\prime}=A\,\,\,\,\&\,\,\,\,B^{\prime}=B\,\,\,\,\,\,\,\,\,\,\,\,...(1)}

Now,

\rm{\left(AB+BA\right)^{\prime}=\left(AB\right)^{\prime}+\left(BA\right)^{\prime}}

\rm{\implies\left(AB+BA\right)^{\prime}=\left(B\right)^{\prime}\cdot\left(A\right)^{\prime}+\left(A\right)^{\prime}\cdot\left(B\right)^{\prime}}

From (1), we get,

\rm{\implies\left(AB+BA\right)^{\prime}=B\cdot\,A+A\cdot\,B}

\rm{\implies\left(AB+BA\right)^{\prime}=BA+AB}

\rm{\implies\left(AB+BA\right)^{\prime}=AB+BA}

Hence (AB+BA) is a symmetric matrix

Similar questions