Math, asked by doshiaarav08, 2 months ago

If a and b are the roots of quadratic equation 3m²+ 2m – 4 = 0, Then value of a²+ b² is​

Answers

Answered by Yuseong
10

 \Large {\underline { \sf {Answer :}}}

\sf{ \dfrac{28}{9} }

 \Large {\underline { \sf {Explication \; of \; steps :}}}

As per the provided information in the given question, we have :

  • Given quadratic equation = 3m²+ 2m + (– 4) = 0
  • Here,  \alpha and  \beta are the roots of it.

We are asked to calculate the value of  \sf { ( \alpha^2 + \beta^2) } .

We know that, if  \alpha and  \beta are roots of the quadratic equation \sf{ ax^2+ bx + c = 0} . Then,

\longrightarrow \underline{\boxed{ \sf { \alpha + \beta = \dfrac{-b}{a} }}}

and,

 \longrightarrow\underline{\boxed{ \sf { \alpha \times \beta = \dfrac{c}{a} }}}

Here,

  • a = 3
  • b = 2
  • c = -4

Substituting the values in both formulae :

 \longrightarrow  \sf { \alpha + \beta = \dfrac{-b}{a} }

 \longrightarrow  \sf { \alpha + \beta = \dfrac{-2}{3} }

Let it be the equation (1).

 \longrightarrow \sf { \alpha \times \beta = \dfrac{c}{a} }

 \longrightarrow \sf { \alpha \times \beta = \dfrac{-4}{3} }

Let it be the equation (2).

Now, we have,

 \longrightarrow  \sf { \alpha + \beta = \dfrac{-2}{3} }

On squaring both sides,

 \longrightarrow  \sf { {(\alpha + \beta)}^{2} = {\Bigg \lgroup \dfrac{-2}{3} \Bigg \rgroup}^{2} }

 \longrightarrow  \sf {( \alpha)^2 + (\beta)^2 + 2( \alpha \times \beta ) =  \dfrac{4}{9}  }

Substituting the value of  (\alpha \times \beta ) from the equation (2).

 \longrightarrow  \sf {( \alpha)^2 + (\beta)^2 + 2\Bigg ( \dfrac{-4}{3} \Bigg ) =  \dfrac{4}{9}  }

 \longrightarrow  \sf {\alpha^2 + \beta^2 + \Bigg ( \dfrac{-8}{3} \Bigg ) =  \dfrac{4}{9}  }

 \longrightarrow  \sf {\alpha^2 + \beta^2 - \dfrac{8}{3} =  \dfrac{4}{9}  }

Transposing -8/3 from L.H.S to R.H.S.

 \longrightarrow  \sf {\alpha^2 + \beta^2 =  \dfrac{4}{9} + \dfrac{8}{3}  }

 \longrightarrow  \sf {\alpha^2 + \beta^2 =  \dfrac{4+24}{9}  }

 \longrightarrow \underline{\boxed{  \sf {\alpha^2 + \beta^2 =  \dfrac{28}{9}}  }} \; \bigstar

 \therefore\; \sf { {(\alpha + \beta)}^{2} } is 28/9.

 \Large {\underline { \sf {More \; Information :}}}

  • Quadratic equation is an equation of second degree or degree 2, so it has two roots.

  • If  \alpha and  \beta satisfy the equation  \sf{ ax^2+ bx + c = 0} then If  \alpha and  \beta are called roots of the equation.

  • Roots of quadratic equation are also called zeroes of the quadratic equation.

  • If  \alpha and  \beta are roots of the quadratic equation \sf{ ax^2+ bx + c = 0} . Then,

\longrightarrow \underline{\boxed{ \sf { \alpha + \beta = \dfrac{-b}{a} }}}

and,

 \longrightarrow\underline{\boxed{ \sf { \alpha \times \beta = \dfrac{c}{a} }}}

Similar questions