Math, asked by farykhan223, 11 days ago

If a and b are the roots of
x { }^{2}  - 3x + 7 = 0
then the value of 1/a+1/b​

Answers

Answered by triddhi945
0

Step-by-step explanation:

Correct option is

D

7

3

Given: α,β are zeroes of the polynomial 4x

2

+3x+7

To find the value of

α

1

+

β

1

We know that equation ax

2

+bx+c=0

Then sum of roots =

a

−b

and product of roots=

a

c

From the given quadratic equation,

α+β=−

4

3

and αβ=

4

7

Therefore,

α

1

+

β

1

=

αβ

α+β

=

4

7

4

3

=−

7

3

α

1

+

β

1

=−

7

3

Answered by MrDgp
0

\huge{question}

If a and b are the roots of

x { }^{2} - 3x + 7 = 0 \\ therfore \: \frac{1}{ \alpha } +  \frac{1}{ \beta } =

 \huge{answer}

Given: α,β are zeroes of the polynomial 4x2+3x+7

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0Then sum of roots =a−b and product of roots=ac

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0Then sum of roots =a−b and product of roots=acFrom the given quadratic equation,

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0Then sum of roots =a−b and product of roots=acFrom the given quadratic equation,α+β=−43 and αβ=47

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0Then sum of roots =a−b and product of roots=acFrom the given quadratic equation,α+β=−43 and αβ=47Therefore, 

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1We know that equation ax2+bx+c=0Then sum of roots =a−b and product of roots=acFrom the given quadratic equation,α+β=−43 and αβ=47Therefore, α1+β1=αβα+β

 \mathfrak\red{hope}\green{it}\orange{helps}

=47−43=−73

=47−43=−73⇒α1+β1=−73

Similar questions