If a and b are the roots of the equation x^2 +x+2=0, then ( a^10 + b^10) / [a^-10 + b^-10)
A 4096
B. 2048
C. 1024
D. 512
E. 256
Answers
EXPLANATION.
α,β are the roots of the equation,
⇒ x² + x + 2 = 0.
As we know that,
Sum of zeroes of quadratic equation,
⇒ α + β = -b/a.
⇒ α + β = -1.
Products of zeroes of quadratic equation,
⇒ αβ = c/a.
⇒ αβ = 2.
To find values of = (α¹⁰ + β¹⁰)/(α⁻¹⁰ + β⁻¹⁰).
We can also write as,
⇒ (α⁻¹⁰ + β⁻¹⁰) = 1/(α¹⁰ + β¹⁰).
Put the values in equation, we get.
⇒ (α¹⁰ + β¹⁰)/(1/α¹⁰ + 1/β¹⁰).
⇒ (α¹⁰ + β¹⁰)/(α¹⁰ + β¹⁰)/α¹⁰β¹⁰.
⇒ α¹⁰β¹⁰.
⇒ (αβ)¹⁰.
⇒ (2)¹⁰.
⇒ 1024.
Option [C] is correct answer.
If a and b are the roots of the equation x^2 +x+2=0, then ( a^10 + b^10) / [a^-10 + b^-10)
- A 4096
- B. 2048
- C. 1024
- D. 512
- E. 256
- Option C. 1024
According to the question
Here α and β are the roots of the equation,
⇒ x² + x + 2 = 0.
Therefore,
⇒α + β = -1/1
or,
⇒ α + β = -b/a.
⇒ α + β = -1.
Products of zeroes of quadratic equation,
⇒ αβ = c/a.
⇒ αβ = 2.
Now,
We have to find the value of
(α¹⁰+β¹⁰)/{α^(-10)+β^(-10)}
=(α¹⁰+β¹⁰)/(1/α¹⁰ +1/β¹⁰)
={(α¹⁰+β¹⁰)/(α¹⁰+β¹⁰)}×(αβ)¹⁰
=(αβ)¹⁰
=(2)¹⁰
=1024
Hence, option C is correct
━━━━━━━━━━━━━━━━━━━━━━━━━