CBSE BOARD X, asked by snigdha51, 9 months ago

if a and b are the roots of the quadratic equation 2x^2- 3x-6. find the equation whose roots are 1/a and 1/b​

Answers

Answered by Anonymous
4

GIVEN:

  • a \: and \: b \: is \: the \: roots\: of \: 2 {x}^{2}  - 3x - 6 = 0 \: quadratic \: eqn

TO FIND:

  • \: quadratic \: eqn \: \: having \: roots \:  \frac{1}{a} and \:  \frac{1}{b}

SOLUTION:

  • FOR ANY QUADRATIC EQUATION  {x}^{2}  - sum \: of \:  roots \:  \times x + product \: of \: roots = 0
  • from \: our \: given \: eqn \\ 2 {x}^{2}  - 3x - 6 = 0 \\ devide \: both \: side \: with \: 2 \\  {x }^{2}  -  \frac{3}{2} x -  \frac{6}{2}  = 0 \\  \\ hance \\ (a + b) =  \frac{3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a \times b =   - \frac{6}{2}  \\ hance \:  \frac{a + b}{ab}  =  \frac{ \frac{3}{2} }{  - \frac{6}{2} }  \:  \:  \:  \:   \:  \:  \:  \: and \:  \frac{1}{ab}  =   - \frac{1}{3}  \\  \frac{1}{a}  +  \frac{1}{b}  =  -  \frac{1}{2 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

HANCE THE QUADRATIC EQUATION WILL BE

  •  {x}^{2}  - ( -  \frac{1}{2} )x  - 3 = 0

HOPE THIS IS HELPFUL...

Similar questions