Math, asked by gouri3921, 9 months ago

If a and b are the roots of x^2 -3x+p = 0 and c, d are roots of x^2 -12x+q = 0 , where a, b, c, d form a G.P. prove that (q + p) : (q –p) = 17 : 15

Answers

Answered by Anonymous
23

Given:

\sf{\leadsto{The \ roots \ of \ x^{2}-3x+p=0 \ are}}

\sf{a \ and \ b.}

\sf{\leadsto{The \ roots \ of \ x^{2}-12x+q=0 \ are}}

\sf{c \ and \ d.}

\sf{\leadsto{a, \ b, \ c, \ d \ form \ a \ G.P.}}

To prove:

\sf{\longmapsto{(q+p):(q-p)=17:15}}

Solution:

\sf{If \ quadratic  \ equation \ x^{2}-3x+p=0}

\sf{has \ a \ and \ b \ as \ it's \ roots. }

\sf{Then,}

\sf{\mapsto{a+b=3...(1)}}

\sf{\mapsto{ab=p...(2)}}

\sf{If \ quadratic  \ equation \ x^{2}-12x+q=0}

\sf{has \ c \ and \ d \ as \ it's \ roots. }

\sf{Then,}

\sf{\mapsto{c+d=12...(3)}}

\sf{\mapsto{cd=q...(4)}}

\sf{But, \ a, \ b, \ c \ and \ d \ are \ in \ G.P.}

\boxed{\sf{a_{n}=ar^{n-1}}}

\sf{Hence,}

\sf{First \ term \ (a_{1})=a=a,}

\sf{Second \ term \ (a_{2})=b=ar,}

\sf{Third \ term \ (a_{3})=c=ar^{2},}

\sf{Forth \ term \ (a_{4})=d=ar^{3}}

\sf{In \ a \ G.P. \ \dfrac{a_{n+1}}{a_{n}} \ is \ constant}

\sf{\therefore{\dfrac{b}{a}=\dfrac{c}{b}=\dfrac{d}{c}}}

\sf{\therefore{\dfrac{b}{a}=\dfrac{d}{c}}}

\sf{By \ componendo}

\sf{\dfrac{a+b}{a}=\dfrac{c+d}{c}}

\sf{...from \ (1) \ and (3) \ we \ get}

\sf{\dfrac{3}{a}=\dfrac{12}{c}}

\sf{\therefore{\dfrac{c}{a}=\dfrac{12}{3}}}

\sf{But, \ a=a \ and \ c=ar^{2}}

\sf{\therefore{\dfrac{ar^{2}}{a}=\dfrac{12}{3}}}

\sf{\therefore{r^{2}=4}}

\sf{\therefore{r=\pm2}}

____________________________________

\sf{When \ r=2}

\sf{a=a,}

\sf{b=ar=2a,}

\sf{c=ar^{2}=4a,}

\sf{d=ar^{3}=8a}

\sf{Substituting \ the \ values \ of \ a  \ and \ b \ in}

\sf{equation(1)}

\sf{a+2a=3}

\sf{\therefore{3a=3}}

\boxed{\sf{\therefore{a=1}}}

\sf{From \ equation(2)}

\sf{ab=p}

\sf{But, \ a=1 \ and \ r=2}

\sf{\therefore{p=2}}

\sf{From \ equation(4)}

\sf{cd=q}

\sf{\therefore{(ar^{2})(ar^{3})=q}}

\sf{But, \ a=1 \ and \ r=2}

\sf{\therefore{(1^{2})(2^{5})=q}}

\sf{\therefore{q=32}}

\sf{\leadsto{\dfrac{q+p}{q-p}=\dfrac{32+2}{32-2}}}

\sf{\therefore{\dfrac{q+p}{q-p}=\dfrac{34}{30}}}

\sf{\therefore{\dfrac{q+p}{q-p}=\dfrac{17}{15}}}

\sf{\longmapsto{\therefore{(q+p):(q-p)=17:15}}}

____________________________________

\sf{When \ r=-2}

\sf{a=a,}

\sf{b=ar=-2a,}

\sf{c=ar^{2}=4a,}

\sf{d=ar^{3}=-8a}

\sf{Substituting \ the \ values \ of \ a \ and \ b \ in}

\sf{equation(1)}

\sf{a-2a=3}

\sf{\therefore{-a=3}}

\boxed{\sf{\therefore{a=-3}}}

\sf{From \ equation(2)}

\sf{ab=p}

\sf{\therefore{a(ar)=p}}

\sf{\therefore{a^{2}r=p}}

\sf{But, \ a=-3 \ and \ r=-2}

\sf{\therefore{p=(-3)^{2}(-2)}}

\sf{\therefore{p=-18}}

\sf{From \ equation(4)}

\sf{cd=q}

\sf{\therefore{(ar^{2})(ar^{3})=q}}

\sf{\therefore{a^{2}r^{5}=q}}

\sf{But, \ a=-3 \ and \ r=-2}

\sf{\therefore{q=(-3)^{2}(-2)^{5}}}

\sf{\therefore{q=9(-32)}}

\sf{\therefore{q=-288}}

\sf{\leadsto{\dfrac{q+p}{q-p}=\dfrac{-288+(-18)}{-288-(-18)}}}

\sf{\therefore{\dfrac{q+p}{q-p}=\dfrac{-306}{-270}}}

\sf{\therefore{\dfrac{q+p}{q-p}=\dfrac{18(17)}{18(15)}}}

\sf{\therefore{\dfrac{q+p}{q-p}=\dfrac{17}{15}}}

\sf{\longmapsto{\therefore{(q+p):(q-p)=17:15}}}

\sf{Hence \ proved,}

\sf\purple{\tt{(q+p):(q-p)=17:15}}

Answered by Anonymous
3

Answer:

The roots of x2−3x+p=0 are

\sf{a \ and \ b.}a and b.

\sf{\leadsto{The \ roots \ of \ x^{2}-12x+q=0 \ are}}⇝The roots of x2−12x+q=0 are

\sf{c \ and \ d.}c and d.

\sf{\leadsto{a, \ b, \ c, \ d \ form \ a \ G.P.}}⇝a, b, c, d form a G.P.

To prove:

\sf{\longmapsto{(q+p):(q-p)=17:15}}⟼(q+p):(q−p)=17:15

Solution:

\sf{If \ quadratic \ equation \ x^{2}-3x+p=0}If quadratic equation x2−3x+p=0

\sf{has \ a \ and \ b \ as \ it's \ roots. }has a and b as it′s roots.

\sf{Then,}Then,

\sf{\mapsto{a+b=3...(1)}}↦a+b=3...(1)

\sf{\mapsto{ab=p...(2)}}↦ab=p...(2)

\sf{If \ quadratic \ equation \ x^{2}-12x+q=0}If quadratic equation x2−12x+q=0

\sf{has \ c \ and \ d \ as \ it's \ roots. }has c and d as it′s roots.

\sf{Then,}Then,

\sf{\mapsto{c+d=12...(3)}}↦c+d=12...(3)

\sf{\mapsto{cd=q...(4)}}↦cd=q...(4)

\sf{But, \ a, \ b, \ c \ and \ d \ are \ in \ G.P.}But, a, b, c and d are in G.P.

\boxed{\sf{a_{n}=ar^{n-1}}}an=arn−1

\sf{Hence,}Hence,

\sf{First \ term \ (a_{1})=a=a,}First term (a1)=a=a,

\sf{Second \ term \ (a_{2})=b=ar,}Second term (a2)=b=ar,

\sf{Third \ term \ (a_{3})=c=ar^{2},}Third term (a3)=c=ar2,

\sf{Forth \ term \ (a_{4})=d=ar^{3}}Forth term (a4)=d=ar3

\sf{In \ a \ G.P. \ \dfrac{a_{n+1}}{a_{n}} \ is \ constant}In a G.P. anan+1 is constant

\sf{\therefore{\dfrac{b}{a}=\dfrac{c}{b}=\dfrac{d}{c}}}∴ab=bc=cd

\sf{\therefore{\dfrac{b}{a}=\dfrac{d}{c}}}∴ab=cd

\sf{By \ componendo}By componendo

\sf{\dfrac{a+b}{a}=\dfrac{c+d}{c}}aa+b=cc+d

\sf{...from \ (1) \ and (3) \ we \ get}...from (1) and(3) we get

\sf{\dfrac{3}{a}=\dfrac{12}{c}}a3=c12

\sf{\therefore{\dfrac{c}{a}=\dfrac{12}{3}}}∴ac=312

\sf{But, \ a=a \ and \ c=ar^{2}}But, a=a and c=ar2

\sf{\therefore{\dfrac{ar^{2}}{a}=\dfrac{12}{3}}}∴a

Similar questions