Math, asked by monjyotiboro, 2 months ago

if â and b are the unit vectors along a and b respectively , then what is the projection of b on â?​

Answers

Answered by LivetoLearn143
4

\large\underline{\sf{Solution-}}

We know that

\rm :\longmapsto\:Projection \: of \: \vec{a} \: on \: \vec{b} \:  = \dfrac{\vec{a}.\vec{b}}{ |\vec{b}| }

Since,

\rm :\longmapsto\:\hat{a} \: is \: unit \: vector.

So,

\rm :\longmapsto\: |\hat{a}|  = 1

Now,

\rm :\longmapsto\:Projection \: of \: \vec{b} \: on \: \hat{a} \:

\rm \:  =  \:  \: \dfrac{\vec{b}.\hat{a}}{ |\hat{a}| }

\rm \:  =  \:  \: \vec{b}.\hat{a}

Hence,

\rm :\longmapsto\:Projection \: of \: \vec{b} \: on \: \hat{a} \:   = \vec{b}.\hat{a}

Proof of projection of vector a on vector b

Let assume that

\rm :\longmapsto\:\vec{a} \: and \: \vec{b} \: inclined \: each \: other \: at \: p

So,

\rm :\longmapsto\:\vec{a}.\vec{b} =  |\vec{a}| \:  |\vec{b}|  \: cosp

Now, In triangle OAB

\rm :\longmapsto\:cosp = \dfrac{OB}{OA}

\rm :\longmapsto\:OB = OA \: cosp

\rm :\longmapsto\:OB =  |\hat{a}|  \: cosp

\rm :\longmapsto\:OB = \dfrac{ |\vec{a}|  \:  |\vec{b}|  \: cosp}{ |\vec{b}| }

\rm :\longmapsto\:OB = \dfrac{ \vec{a} \: . \:\vec{b}}{ |\vec{b}| }

Attachments:
Similar questions