Math, asked by silupradhan0871, 11 months ago

if a and b are the zero of the quadratic polynomial p(x)=6x²+x-1,then find the values of a/b+b/a+2[1/a+1/b]+3ab​

Answers

Answered by Sharad001
81

Answer :-

 \boxed{\sf{\frac{a}{b}  +  \frac{b}{a}  + 2 \bigg( \frac{1}{a}  +  \frac{1}{b}  \bigg) + 3ab} =   \frac{-2}{3} }

To Find ;-

Value of -

 \implies \sf{\frac{a}{b}  +  \frac{b}{a}  + 2 \bigg( \frac{1}{a}  +  \frac{1}{b}  \bigg) + 3ab} \\

Explanation :-

If a and b are the zeros of p(x) =6x² + x - 1

We know that ,

 \to \boxed{ \sf{sum \: of \: zeros =   \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2}}}} \\  \\  \therefore \\  \to \:  \boxed{ \:  \sf{ a + b =  \frac{ - 1}{6} } \:  \:  \: }

And ,

 \to \boxed{ \sf{product \: of \: zeros =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }} \\  \therefore \\  \\  \to  \boxed{\sf{ab =  \frac{ - 1}{6} \:  \:  }}

Hence ,

 \to \sf{\frac{a}{b}  +  \frac{b}{a}  + 2 \bigg( \frac{1}{a}  +  \frac{1}{b}  \bigg) + 3ab} \\  \\  \to \sf{ \frac{ {a}^{2}  +  {b}^{2} }{ab}  +  \frac{2(a + b)}{ab}  + 3ab} \\  \\  \to \sf{ \frac{ {(a + b)}^{2} - 2ab }{ab}  +  \frac{2(a + b)}{ab}  + 3ab}

substitute the above values ,

 \to \sf{\frac{ {   \big(\frac{ - 1}{6}  \big)}^{2}   - 2  \big(\frac{ - 1}{6}  \big)}{ \frac{ - 1}{6} }   +  \frac{2 \times  \frac{( - 1)}{6} }{ \frac{ - 1}{6} }  + 3 \times  \frac{( - 1)}{6}}  \\  \\  \to \sf{\frac{ \frac{1}{36}  +  \frac{1}{3} }{ \frac{-1}{6} }  +  \frac{2}{6}  \times  \frac{6}{1}  -  \frac{1}{2} } \\  \\  \to \sf{ -6 \bigg( \frac{1}{36}  +  \frac{1}{3}  \bigg)  + 2 -  \frac{1}{2} } \\  \\  \to \sf{ \frac{-1}{6}  - 2 + 2 -  \frac{1}{2} } \\  \\  \to \sf{  \frac{-1-3}{6} } \\    \\  \to \frac{-4}{6}  =  \frac{-2}{3}

Answered by Anonymous
163

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

a and b are the zeros of Polynomial

</strong><strong>\</strong><strong>b</strong><strong>o</strong><strong>x</strong><strong>e</strong><strong>d</strong><strong>{</strong><strong>→</strong><strong>6 {x}^{2}  + x - 1</strong><strong>}</strong><strong>

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

→ \frac{a}{b}  +  \frac{b}{a}  + 2( \frac{1}{a}  +  \frac{1}{b} ) + 3ab=?

\rule{200}{1}

\huge{\underline{\underline{\purple{Answer→}}}}

 \boxed{→\frac{a}{b}  +  \frac{b}{a}  + 2( \frac{1}{a}  +  \frac{1}{b} ) + 3ab = - \frac{2}{3}}

\rule{200}{1}

\green{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

a and b are the zeros of Polynomial (Given)

We know that -

  • sum \: of \: zeros \:  =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

  • product \: of \: zeros =  \frac{contant \: term}{coefficient \: of \:  {x}^{2} }

In this polynomial -

• Coefficient of = 6

Coefficient of x = 1

Constant Term = - 1

Thus,

\boxed{\red{→a + b =  -  \frac{1}{6}}}

\boxed{\blue{→ab =  -  \frac{1}{6}}}

Now come to the question -

→ \frac{a}{b}  +  \frac{b}{a}  + 2( \frac{1}{a}  +  \frac{1}{b} ) + 3ab \\  \\ → \frac{ {a}^{2}  +  {b}^{2} }{ab}   + 2( \frac{a + b}{ab} ) + 3ab

Using the identity :-

  •  {a}^{2}  +  {b}^{2}  = ( {a + b)}^{2} - 2ab

 →\frac{( {a + b)}^{2} - 2ab }{ab}  + 2( \frac{a + b}{ab} ) + 3ab

Now substitute the values of (a + b) and ab :-

 →\frac{ ( - \frac{  {1}}{6})^{2} - 2 \times  ( - \frac{1}{6})  }{( -  \frac{1}{6}) }  + 2( \frac{ -  \frac{1}{6} }{ -  \frac{1}{6} } ) + 3 \times ( -  \frac{1}{6} ) \\  \\ → \frac{ \frac{1}{36 }  +  \frac{1}{3}  }{ -  \frac{1}{6} }  + 2 \times 1 -  \frac{1}{2}  \\  \\  →\frac{ \frac{1 + 12}{36} }{ -  \frac{1}{6} }  + 2 -  \frac{1}{2}  \\  \\ →  \frac{13}{36}  \times ( - 6) + 2 -  \frac{1}{2}  \\  \\ → -  \frac{13}{6}  +  \frac{4 - 1}{2}  \\  \\  →\frac{ - 13}{6}  +  \frac{3}{2}  \\  \\ → \frac{ - 13 + 9}{6}  \\  \\  →\frac{ - 4}{6}  \\  \\ → -  \frac{2}{3}

\rule{200}{1}

Similar questions