Math, asked by vaibhav7ak, 10 months ago

if a and b are the zeroes of p (x) = ax^2-2x+3a and 1/a + 1/b =1 ,then find a ?​

Answers

Answered by Abhishek474241
1

✪AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • \tt\alpha{\:and}\beta are zeroes of polynomial
  • p(x)a=ax²-2x+3a
  • \tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}=1

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Value of a

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta\frac{-b}{a}=\frac{2}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}=\frac{3a}{a}=3

Solving

\implies\tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}=1

\implies\tt\dfrac{\alpha+\beta}{\alpha\times\beta}=1

¶utting values

=>{2/a}/3=1

=>2/a=3

=>2=3a

=>a=2/3

polynomial be

p(x)=2x²-6x+6

Additional Information

Here,

a=2

b=-6

C=6

\rightarrow\tt\alpha{+}\beta{=}\dfrac{6}{2}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{6}{2}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Similar questions