Math, asked by shivkrsharma2836, 11 months ago

If a and B are the zeroes of the polinomial 2-3x-x^2

Answers

Answered by Anonymous
35

Correct Question

Find the zeros of polynomial

x² - 3x + 2

Solution

→ x² - 3x + 2 = 0

Solve this by splitting middle term

→ x² - 2x - x + 2 = 0

→ x(x - 2) - 1(x - 2) = 0

→ (x - 2)(x - 1) = 0

Either

→ (x - 2) = 0

→ x = 2

Or

(x - 1) = 0

→ x = 1

Hence, 2 and 1 are the zeros of given polynomial

Answered by sethrollins13
2

✯✯ QUESTION ✯✯

If a and B are the zeroes of the polynomial 2-3x-x²..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{{x}^{2}-3x+2}

By Splitting Middle Term : -

\longmapsto\tt{{x}^{2}(2x+1x)+2=0}

\longmapsto\tt{{x}^{2}-2x-1x+2=0}

\longmapsto\tt{x(x-2)-1(x-2)}

\longmapsto\tt{(x-1)(x-2)}

  • x = 1
  • x = 1

So , 1 and 2 are the zeroes of polynomial x²-3x+2..

➥Here : -

  • a = 1
  • b = -3
  • c = 2

Sum of Zeroes : -

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{1+2=\dfrac{-(-3)}{1}}

\longmapsto\tt\bold{3=3}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

Product Of Zeroes : -

\longmapsto\tt\bold{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{1\times{2}=\dfrac{2}{1}}

\longmapsto\tt\bold{2=2}

\green\longmapsto\:\large\underline{\boxed{\bf\pink{L.H.S}\orange{=}\orange{R.H.S}}}

HENCE VERIFIED

Similar questions