If a and B are the zeroes of the polynomial ax square+ bx + c, find the value of a² + B ²
Answers
Answered by
0
Step-by-step explanation:
Log in to add comment
Answer
2.5/5
14
prajapatyk01
Ace
354 answers
420.7K people helped
Let given quadratic polynomial be,
f(x)=ax²+bx+c
Let A and B be the zeroes of f(x).
Then we know that,
A={-b+√(b²-4ac)}/2a
and,
B={-b-√(b²-4ac)}/2a
Now we have,
=A²
=[{-b+√(b²-4ac)}/2a]²
={b²-2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac-2b√(b²-4ac)}/4a²
and
=B²
=[{-b-√(b²-4ac)}/2a]²
={b²+2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac+2b√(b²-4ac)}/4a²
Now,
=A²-B²
={2b²-4ac-2b√(b²-4ac)}/4a²-{2b²-4ac+2b√(b²-4ac)}/4a²
={2b²-4ac-2b√(b²-4ac)-2b²+4ac-2b√(b²-4ac)}/4a²
={-4b√(b²-4ac)}/4a²
=-b√(b²-4ac)/a²
Hence,
A²-B²=-b√(b²-4ac)/a²
Answered by
7
Step-by-step explanation:
If α and β are the roots of the polynomial ax2 + bx + c, then find the value of α2 + β2.
Similar questions