Math, asked by jayaruttala1983, 10 months ago

If a and B are the zeroes of the polynomial f(x) = x2 – 5x + k such that a - b = 1, then value of k is:
O 8​

Attachments:

Answers

Answered by ItzAditt007
0

\rule{400}4

ANSWER:-

▪︎ Given:-

  • \sf f(x) = {x}^{2}-5x+k

  • \sf\alpha\: And\: \beta\:are\:zeroes

  • \sf\alpha-\beta = 1

▪︎ To find:-

  • The value of k

▪︎ Concept Used:-

  • In a quadratic polynomial sum of zeroes \sf\large = \frac{-b}{a}

\rule{400}2

▪︎ So Here,

\tt\mapsto \alpha  +  \beta  =   \frac{ - b}{a}  \\  \\ \tt\mapsto \alpha  +  \beta  =  \frac{ - ( - 5)}{1}  \\  \\ \tt\mapsto \alpha  +  \beta  = 5...(1)

▪︎ Also it is given that:-

\tt\mapsto \alpha  -  \beta  = 1...(2)

\rule{400}2

▪︎ Now,

• Let us add eq(2) and eq(1)..

\tt\mapsto( \alpha  +  \beta ) + ( \alpha  -  \beta ) = (5) + (1) \\  \\\tt\mapsto  \alpha  + \cancel \beta  +  \alpha  - \cancel \beta  = 5 + 1 \\  \\ \tt\mapsto \alpha  +  \alpha  = 6 \\  \\ \tt\mapsto2 \alpha  = 6 \\  \\ \tt\mapsto \alpha  = \cancel \frac{6}{2}  \\  \\ \tt\large\red{\fbox{\mapsto \alpha  = 3}}

\large{\mathcal{\blue{\underline{\underline{\pink{\therefore{One\:Zero\:Is\:3}}}}}}}

\rule{400}2

▪︎ So,

• If we put the value of x = 3 then the result of the given f(x) should be equal to 0.

\sf \mapsto {x}^{2} - 5x + k = 0 \\  \\  \sf \mapsto {3}^{2}  - 5(3) + k = 0 \\  \\\sf \mapsto 9 - 15 + k = 0 \\  \\ \sf \mapsto - 6 + k = 0 \\  \\ \sf \mapsto \: k = 0 + 6 \\  \\ \sf\huge\pink{\fbox {\mapsto \: k = 6}}

\rule{400}2

{\small{\green{\boxed{\bold{\mathcal{\therefore{The\:req.\:value\:of\:k\:is\:6.}}}}}}}

\rule{400}4

Similar questions