Math, asked by chukkasaikumar14, 10 months ago

If a and b are the zeroes of the polynomial f(x) = x2- 5x+ k such that a - b = 1 , then the value of k is​

Answers

Answered by SarcasticL0ve
6

Given:-

  •  \alpha and  \beta are the zeroes of polynomial.

  • f(x) = x² - 5x + k

  • \sf \alpha - \beta = 1

To find:-

  • Value of k.

Solution:-

★ x² - 5x + k

The given equation is in the form of standard quadratic equation

that is ax² + bx + c = 0.

Thus, the value of a, b and c are:-

  • a = 1
  • b = -5
  • c = k

We know that:-

Sum of zeroes ( \sf \alpha + \beta ) =  \dfrac{-b}{a}

:\implies\sf ( \alpha + \beta ) =  - \dfrac{(-5)}{1}

:\implies\sf ( \alpha + \beta ) = 5

Product of zeroes ( \sf \alpha \beta ) =  \dfrac{c}{a}

:\implies\sf ( \alpha \beta ) =  \dfrac{k}{1}

:\implies\sf ( \alpha \beta ) = k

\rule{200}{2}

Now, \sf \alpha - \beta = 1

Squaring both sides:-

:\implies\sf ( { \alpha } - { \beta })^2= (1)^2

:\implies\sf { \alpha }^2 + { \beta }^2 - 2 \alpha \beta = 1

Add and subtract  2 \alpha \beta

:\implies\sf ( { \alpha }^2 + { \beta }^2 + 2 \alpha \beta ) - 4 \alpha \beta = 1

:\implies\sf ( { \alpha }+ { \beta })^2 - 4 \alpha \beta = 1

Putting value of ( \alpha + \beta ) and ( \alpha \beta ) :-

:\implies\sf (5)^2 - 4 \times k = 1

:\implies\sf 25 - 4k = 1

:\implies\sf - 4k = 1 - 25

:\implies\sf - 4k = -24

:\implies\sf k = \cancel{ \dfrac{-24}{-4}}

:\implies\sf k = 6

Hence Solved!!

\rule{200}{2}

Answered by Tanujrao36
18

\huge\bf{ \underline{Question}}

  • If a and b are the zeros of the polynomial \ x^{2}-5x+k such that  a-b = 1 , then the value of k is ?

\huge\bf{ \underline{Answer}}

  • k = 6

\huge\bf{ \underline{Solution}}

\bf{ \underline{ \boxed{ \orange{Sum\:of\:zeroes\:=\:\dfrac{-b}{a}}}}}

\bf{So\:}

\sf{a+b\:=\:\dfrac{-(-5)}{1}}

\sf{a+\cancel{b}\:=\:5}

\sf{a-\cancel{b}\:=\:1}

________________________

\sf{a+a\:=\:5+1}

\sf{2a\:=\:6}

\sf{a\:=\dfrac{6}{2}}

\sf{a\:=\dfrac{\cancel{6}}{\cancel{2}}}

\sf{\bold{\boxed{\boxed{\green{\dag{a\:=\:3}}}}}}

\mapsto\sf{a-b\:=\:1 }

\mapsto\sf{3-b\:=\:1}

\mapsto\sf{b\:=\:3-1}

\mapsto\sf{b\:=\:2}

\sf{\bold{\boxed{\boxed{\green{\dag{b\:=\:2}}}}}}

\bf{ \underline{ \boxed{ \orange{Product\:of\:zeroes\:=\:\dfrac{c}{a}}}}}

\sf{a\times b\:=\:\dfrac{k}{1}}

\sf{3\times2\:=\:k}

\huge\sf{\boxed{\boxed{\green{\dag{k\:=\:6}}}}}

Similar questions