Math, asked by Boddeti, 11 months ago

if a and b are the zeroes of the polynomial f(x)=x²-6x+k. find the value of k such that a²+b²=40​

Answers

Answered by Anonymous
6

\bold\red{\underline{\underline{Answer:}}}

Given:-

\bold{a \ and \ b \ are \ the \ zeroes \ of \ the }

\bold{polynomial \ x^{2}-6k+k.}

\bold{a^{2}+b^{2}=40.}

To find:-

Value of k.

\bold\green{\underline{\underline{Solution}}}

\bold{We \ know \ a+b=\frac{-b}{a}}

\bold{a+b=6...(1)}

Also,

\bold{a×b=\frac{c}{a}}

\bold{a×b=k...(2)}

\bold{a^{2}+b^{2}=40...(3)[from \ given]}

\bold{According \ to \ identity}

\bold{a^{2}+b^{2}=(a+b)^{2}-2(a×b)}

\bold{from \ (1), \ (2) \ and \ (3)}

\bold{40=6^{2}-2k}

\bold{40=36-2k}

\bold{40-36=-2k}

\bold{-2k=4}

\bold{k=\frac{-4}{2}}

\bold{k= \ -2}

\bold\orange{Value \ of \ k \ is \ -2.}

Similar questions