Math, asked by dcg04, 1 year ago

If a and b are the zeroes of the polynomial x^2 -5x +4, find a quadratic polynomial having zeroes a+1/b and b+1/a

Answers

Answered by Anonymous
45

Solution

Consider a and b to be the zeros of the polynomial,p(x) = x² - 5x + 4

Here,

a + b = 5............[1]

and, ab = 4................[2]

Now,

a² + b² = (a + b)² - 2ab

→a² + b² = (5)² -2(4)

→a² + b² = 25 - 8

a² + b² = 17............[3]

  • Let S and P denote the sum and product of the zeros of the required polynomial

Now,

S = (a+1)/b + (b+1)/a

→S = [a(a+1)+b(b+1)]/ab

→S = [(a²+b²)+(a+b)]/ab

→S = (17+5)/4

→S = 22/4

S = 11/2

Also,

P = [(a+1)/a][(b+1)/b]

→ P = [(a+1)(b+1)]/ab

→P = [(a+b)+ab+1]/ab

→P = (5+4+1)/4

→P = 10/4

P = 5/2

Required Polynomial is of the form:

x² - Sx + P

= x² -(11/2)x + 5/2

Dividing the equation throughout by 2,we get:

= 2x² - 11x + 5

Answered by BrainlyConqueror0901
32

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Quadratic\:eqn=4x^{2}-25x+25}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a quadratic whose zeroes are a and b are the zeroes of the polynomial x^2 -5x +4.

• We have to find a quadratic polynomial having zeroes a+1/b and b+1/a.

 \underline \bold{Given :  }  \\  \implies a \: \:  and \:  \: b \in \: ( {x}^{2} - 5x + 4) \\  \\  \underline  \bold{to \: find : } \\  \implies  Quadratic\:eqn\:form\:by\:given\:zeroes= ?

• According to given question :

 \bold{By \: Quadratic \:formula  : } \\  \implies  {x}^{2}  - 5x + 4 = 0 \\  \\  \implies x =  \frac{ - b \pm   \sqrt{ {b}^{2} - 4ac }  }{2a}  \\  \\  \implies x =  \frac{ - ( - 5) \pm  \sqrt{ { (- 5)}^{2} - 4 \times 1 \times 4 } }{2 \times 1}  \\  \\  \implies x =  \frac{5 \pm \sqrt{25 - 16} }{2}  \\  \\  \implies x =  \frac{5 \pm3}{2}  \\  \\   \bold{\implies x = 4 \: and \:1 }\\  \\   \therefore \bold{a = 4} \\  \\  \therefore \bold{b = 1} \\ \\  \bold{For \: sum \: of \: zeroes : } \\  \implies a +  \frac{1}{b}  + b +  \frac{1}{a}  \\  \\  \implies  \frac{ {a}^{2}b + a +  {ab}^{2} + b  }{ab}  \\  \\  \implies  \frac{ {4}^{2} \times 1 + 4 + 4 \times  {1}^{2}  + 1 }{4 \times 1}  \\  \\  \implies  \frac{16 + 4 + 4 + 1}{4}  \\  \\   \bold{\implies  \frac{25}{4} } \\  \\   \bold{ For\:product \: of \: zeroes : } \\  \implies (a +  \frac{1}{b} ) \times  (b + \frac{1}{a} ) \\  \\  \implies  \frac{ab + 1}{b}  \times  \frac{ab + 1}{a}  \\   \\  \implies  \frac{4 \times 1 + 1}{1}  \times  \frac{4 \times 1 + 1}{4}  \\  \\  \implies  \frac{5 \times 5}{4}  \\  \\   \bold{\implies  \frac{25}{4} } \\  \\   \bold{For \: Quadratic\:equation : } \\  \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\  \implies  {x}^{2}  -  \frac{25x}{4}  +  \frac{25}{4}  = 0 \\  \\\implies \frac{4x^{2}-25x+25}{4}=0\\\\   \bold{\implies  {4x}^{2}  - 25x + 25 = 0}

Similar questions