Math, asked by rkgamingpoint1, 1 month ago

if a and B are the zeroes of the polynomials f(x) = x2 - px +q, find the value of a2 +B2​

Answers

Answered by amansharma264
10

EXPLANATION.

a and b are the zeroes of the polynomial.

⇒ f(x) = x² - px + q.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ a + b = - b/a.

⇒ a + b = -(-p)/1 = p. - - - - - (1).

Products of the zeroes of the quadratic polynomial.

⇒ ab = c/a.

⇒ ab = q. - - - - - (2).

To find :

⇒ a² + b².

⇒ a² + b² = (a + b)² - 2ab.

⇒ a² + b² = (p)² - 2(q).

a² + b² = p² - 2q.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by jaswasri2006
3

Answer:

a² + b² = p - 2q

Step-by-step explanation:

a , b be zeros of polynomial f(x) = x² - px + q

from polynomial ,

a = 1 , b = -p , c = q

sum of zeros = a + b = -b/a = -(-p)/1 = p → equation 1

product of zeros = ab = c/a = q/1 = q → equation 2

then ,

To find :

a² + b² = (a+b) - 2ab = p - 2(q) = p - 2q

  • a² + b² = p - 2q
Similar questions