Math, asked by Deebika, 11 months ago

If a and B are the zeroes of the quadratic polynomial f(x)=4x²-5x-1,then find the valueof 1/a + 1/B-aB

Answers

Answered by Sharad001
113

Question :-

If a and B are the zeros of the Quadratic polynomial f(x) = 4x² - 5x -1 ,then find the value of -

 \implies \:  \sf{  \frac{1}{a}  + \frac{1}{B}  - aB} \\

Answer :-

 \rightarrow \boxed{ \sf{  \frac{1}{a}  +  \frac{1}{B}  - aB} \:  =  \frac{ - 19}{4} } \:

Formula used :-

 \:  \star \:  \:  \sf{sum \: of \: zeros =  \frac{ - b}{a} } \\  \\  \star \:  \:  \sf{product \: of \: zeros =  \frac{c}{a} }

Explanation :-

Given equation is

→ 4x² - 5x -1 = 0

if a and B are the zeros of this equation ,

then ,

→ it's sum of zeros = a + B

and

→ product of zeros = aB

according to the given formula

 \sf{sum \: of \: zeros } \downarrow \: \\  \implies \sf{ a + B =  \frac{ - coefficient \: of \:  {x} }{coefficient \: of \:  {x}^{2} } } \\  \\  \implies \sf{a   + B =  \frac{ - ( - 5)}{4} } \\  \\  \implies \sf{ a + B =  \frac{5}{4} } \:  \: ....eq.(1) \\  \\  \: \sf{ product \: of \: zeros} \:  \downarrow \:  \\  \\  \implies  \sf{ aB =  \frac{constant}{coefficient \: of \:  {x}^{2} } } \\  \\  \implies \sf{ aB =  \frac{ - 1}{4} } \: ....eq.(2)

\___________________/

Now required solution -

 \rightarrow \sf{  \frac{1}{a}  +  \frac{1}{B}  - aB} \\  \\  \rightarrow \:  \sf{  \frac{a + B}{aB}  - aB} \\  \\  \sf{from \: eq.(1) \: and \: eq.(2)} \\  \\  \rightarrow \:  \sf{ \frac{ \frac{5}{4} }{ \frac{ - 1}{4} }  -  \frac{( - 1)}{4} } \\  \\  \rightarrow \:  \sf{ - 5 +  \frac{1}{4} } \\  \\  \rightarrow \:  \sf{ \frac{ - 20 + 1}{4} } \\  \\  \rightarrow \: \sf{  \frac{ - 19}{4} } \\  \\ hence \\  \\  \rightarrow \boxed{ \sf{  \frac{1}{a}  +  \frac{1}{B}  - aB} \:  =  \frac{ - 19}{4} }

\________________/

#answerwithquality

#BAL

Similar questions