if a and b are the zeroes of the quadratic polynomial f(x)=ax²+bx+c , then evaluate a³+b³
Answers
Answered by
8
EXPLANATION.
a and b are the zeroes of the quadratic polynomial.
⇒ f(x) = ax² + bx + c.
As we know that,
Sum of the zeroes of the quadratic equation.
⇒ a + b = -b/a. - - - - - (1).
Products of the zeroes of the quadratic equation.
⇒ ab = c/a. - - - - - (2).
To evaluate.
⇒ a³ + b³.
⇒ a³ + b³ = (a + b)[a² - ab + b²].
⇒ a³ + b³ = (a + b)[(a² + b²) - ab].
⇒ a³ + b³ = (a + b)[(a + b)² - 2ab - ab].
⇒ a³ + b³ = (a + b)[(a + b)² - 3ab].
Put the values in the equation, we get.
⇒ a³ + b³ = (-b/a)[(-b/a)² - 3(c/a)].
⇒ a³ + b³ = (-b/a)[b²/a² - 3c/a].
⇒ a³ + b³ = (-b/a)[b² - 3ac/a²].
⇒ a³ + b³ = -b³ + 3abc/a³.
⇒ a³ + b³ = 3abc - b³/a³
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
Similar questions
India Languages,
1 month ago
Environmental Sciences,
1 month ago
Math,
1 month ago
English,
2 months ago
Hindi,
10 months ago
Social Sciences,
10 months ago