Math, asked by khushi210581, 5 months ago

If a and b are the zeroes of the quadratic polynomial f(x)=ax^2+bx+c,then evaluate: 1/a-1/b

Answers

Answered by amansharma264
17

EXPLANATION.

→ a and b are the zeroes of the quadratic

polynomial = ax² + bx + c.

To find 1/a - 1/b.

→ Sum of zeroes of quadratic equation.

→ a + b = -b/a.

→ products of zeroes of quadratic equation.

→ ab = c/a.

 \sf :  \implies \:  \dfrac{1}{ \alpha }  -  \:  \dfrac{1}{ \beta }  =  \dfrac{ \beta  -  \alpha }{ \alpha  \beta }  =  \dfrac{ - ( \alpha  -  \beta )}{ \alpha  \beta }  \\  \\ \sf :  \implies \: let \: we \: assume \: that \\  \\\sf :  \implies \: ( \alpha  -  \beta ) {}^{2}   = ( \alpha  +  \beta ) {}^{2} + 4 \alpha  \beta  \\  \\  \sf :  \implies \: ( \alpha  -  \beta ) {}^{2}  = ( \frac{ - b}{a} ) {}^{2}  + 4( \frac{c}{a}) \\  \\ \sf :  \implies \: ( \alpha  -  \beta ) {}^{2}   =  \frac{ {b}^{2} }{ {a}^{2} }  +  \frac{4c}{a}

\sf :  \implies \: ( \alpha  -   \beta ) =  \sqrt{ \dfrac{ {b}^{2} }{ {a}^{2} }  +  \dfrac{4c}{a} }  \\  \\ \sf :  \implies \: ( \alpha  -  \beta ) =  \sqrt{ \frac{ {b}^{2}  + 4ac}{ {a}^{2} } }  \\  \\ \sf :  \implies \: ( \alpha  -  \beta ) =  \frac{ \sqrt{ {b}^{2}  + 4ac} }{a}

\sf :  \implies \:  \dfrac{1}{ \alpha }  -  \dfrac{1}{ \beta }  =  \dfrac{ - ( \alpha  -  \beta )}{ \alpha  \beta }  \\  \\ \sf :  \implies \:  \dfrac{ -  \dfrac{ \sqrt{ {b}^{2}  + 4ac} }{a} }{ \dfrac{c}{a} }  =  \frac{ -  \sqrt{ {b}^{2}  + 4ac}  }{c}

Answered by hotelcalifornia
3

Given:

A quadratic equation ax^{2} +bx+c .

To find:

\frac{1}{\alpha } -\frac{1}{\beta }  where \alpha and \beta are the zeroes of the quadratic equation.

Solution:

We know, for a quadratic equation ax^{2} +bx+c , having zeroes \alpha and \beta,

The sum of its zeroes \alpha+ \beta=\frac{-b}{a}    (i)   ; and

Product of its zeroes \alpha \beta =\frac{c}{a}            (ii)

Now,

Simplifying, the equation we get,

\frac{1}{\alpha }- \frac{1}{\beta } =\frac{\beta -\alpha }{\alpha \beta }    or   \frac{-(\alpha -\beta )}{\alpha \beta }     (iii)

We know a relation,

(\alpha -\beta )^{2} =(\alpha +\beta )^{2} -4\alpha \beta

Substituting the given values in the equation, we get

(\alpha -\beta )^{2} =(\frac{-b}{a} )^{2} -4(\frac{c}{a} )

(\alpha -\beta )^{2} = \frac{b^{2} }{a^{2} }  -4\frac{c}{a}

(\alpha -\beta )^{2} =\frac{b^{2}-4ac }{a^{2} }

Hence, \alpha -\beta = ±\frac{\sqrt{b^{2}-4ac } }{a}

Now, substituting this value in equation (iii) we get

\frac{-(\alpha -\beta )}{\alpha \beta }= ± \frac{\sqrt{b^{2}-4ac } }{a(\frac{c}{a}) }

\frac{-(\alpha -\beta )}{\alpha \beta }= ± \frac{\sqrt{b^{2}-4ac } }{c}

Final answer:

Hence, the value of \frac{1}{\alpha } -\frac{1}{\beta } is ±\frac{\sqrt{b^{2}-4ac } }{c} .

Similar questions