Math, asked by simondaimary90, 9 days ago

if a and b are the zeroes of x^2 + 5x -2 then the value of
 \frac{1}{a}  +  \frac{1}{b}

Answers

Answered by Itzheartcracer
5

{\huge{\boxed{\underline{\underline{\bf Given:-}}}}}

\sf \alpha \;\&\;\beta  \;are\;zeroes\;of\;x^2+5x-2

{\huge{\boxed{\underline{\underline{\bf To\;Find:-}}}}}

\sf \dfrac{1}{\alpha }+\dfrac{1}\beta

{\huge{\boxed{\underline{\underline{\bf Solution:-}}}}}

\sf We\;know\;that

\sf \alpha +\beta =\dfrac{-b}{a}

\sf \alpha \beta =\dfrac{c}{a}

\sf On\;comparing\;the\;equation\;with\;ax^2+bx+c

\sf a=1\;\&\;b=5\;\&\;c=-2

\sf\alpha +\beta =\dfrac{-5}{1}

\sf\alpha +\beta =-5

\sf \alpha \beta =\dfrac{-2}{1}

\sf \alpha \beta =-2

\sf Now,\;Finding

\sf\dfrac{1}{\alpha }+\dfrac{1}{\beta }

\sf\dfrac{\alpha +\beta }{\alpha \beta }

\sf\dfrac{-5}{-2}

\sf\dfrac{5}{2}

Answered by IIMrVelvetII
15

❍ Given :-

  • α and β are zeroes of x² + 5x - 2

❍ To Find :-

  •  \dfrac{1}{ \alpha } + \dfrac{1}{ \beta }

❍ Solution :-

We know that,

→\boxed{\sf \alpha + \beta = \dfrac{ - b}{a}}

→\boxed{\sf \alpha \beta = \dfrac{c}{a}}

On comparing the equation with ax² + bx + c,

  1. a = 1
  2. b = 5
  3. c = -2

1•}  \sf \alpha + \beta = \dfrac{ - 5}{1}

Hence, \sf \alpha + \beta = - 5

2•} Now,  \sf \alpha \beta = \dfrac{ - 2}{1}

Hence, \sf \alpha \beta = - 2

➸ Now we have to find  \dfrac{1}{ \alpha } + \dfrac{1}{ \beta } ,

 → \dfrac{ \alpha  +  \beta }{ \alpha  \beta }

\sf → \dfrac{\cancel{-} 5}{\cancel{-} 2}

\sf → \dfrac{5}{2}

Hence, the answer is \sf \dfrac{5}{2} .

Similar questions