Math, asked by defrostmonsterg, 8 months ago

if a and B are the zeroes
the quadratic
polynomial p(x)=2x^2+9x+6 find the value
of a^2B+ ab^2​

Answers

Answered by TrickYwriTer
4

Step-by-step explanation:

Given -

  • α and β are zeroes of polynomial p(x) = 2x² + 9x + 6

To Find -

  • Value of α²β + αβ²

→ αβ(α + β)

Now,

As we know that :-

  • α + β = -b/a

→ α + β = -9/2

And

  • αβ = c/a

→ αβ = 6/2

Now,

The value of αβ(α + β) is

→ 6/2(-9/2)

→ -54/4

→ -27/2

Hence,

The value of α²β + αβ² is -27/2.

Answered by SarcasticL0ve
4

Given:-

  •  \alpha and  \beta are zeroes of polynomial p(x) = 2x² + 9x + 6

To Find:-

  • Value of  \sf{ { \alpha}^2 \beta + \alpha { \beta}^2}

\implies \; \; \; \; \sf{ \alpha \beta ( \alpha + \beta )}

Solution:-

\bullet \; \; \sf{a = 2}

\bullet \; \; \sf{b = 9}

\bullet \; \; \sf{c = 6}

★ If  \alpha and  \beta are zeroes of polynomial then,

\small \; \; \; \star \; {\underline{\underline{\sf{\purple{Sum\;of\;zeroes\;( \alpha + \beta )\;:}}}}}

: \implies \sf{ \alpha + \beta = \dfrac{-b}{a}} \\ \\ : \implies { \alpha + \beta = \dfrac{-9}{2}}

\small \; \; \; \star \; {\underline{\underline{\sf{\purple{Product\;of\;zeroes\;( \alpha \beta )\;:}}}}}

: \implies \sf{ \alpha \beta = \dfrac{c}{a}} \\ \\ : \implies { \alpha \beta = \dfrac{6}{2}}

\rule{200}{3}

Therefore, we get value of  \sf{( \alpha + \beta ) \; and \; ( \alpha \beta )}

\small \; \; \; \star \; {\underline{\underline{\sf{\purple{Then,\;Value\;of\;  \alpha \beta ( \alpha + \beta ) \;is:}}}}}

: \implies \rm{ \dfrac{6}{4} \bigg( \dfrac{-9}{2} \bigg)}

: \implies \rm{ \cancel{\dfrac{-54}{4}}}

: \implies \rm{ \cancel{\dfrac{-27}{2}}}

{\underline{\underline{\boxed{\dag \; { \alpha}^2 \beta + \alpha { \beta}^2}}}}

\dag \; {\underline{\underline{\sf{\red{Hence\;Solved!}}}}}

\rule{200}{3}

Similar questions