Math, asked by snehagupta211005, 22 days ago

if a and b are the zeros of quadratic polynomial f(×) =a×2+b×+c, then evaluate a2/b+b2/a​

Answers

Answered by sinhaaditya500
0

Step-by-step explanation:

Given polynomial, f(x) = ax² + bx + c

If, α and β are the zeros of the quadratic polynomial.

\begin{gathered} \alpha + \beta = \frac{ - b}{a} \\ \\ \alpha \beta = \frac{c}{a} \end{gathered}

α+β=

a

−b

αβ=

a

c

Now, (1)

\begin{gathered}( \alpha - \beta )^{2} = ( \alpha + \beta ) ^{2} - 4 \alpha \beta \\ \\ ( \alpha - \beta ) ^{2} = ( \frac{ - b}{a} ) ^{2} - 4 (\frac{c}{a} ) \\ \\ \alpha - \beta = \frac{\sqrt{ {b}^{2} - 4ac} }{a}\end{gathered}

(α−β)

2

=(α+β)

2

−4αβ

(α−β)

2

=(

a

−b

)

2

−4(

a

c

)

α−β=

a

b

2

−4ac

Now (2)

\begin{gathered} \frac{1}{ \alpha } - \frac{1}{ \beta } = \frac{ \beta - \alpha }{ \alpha \beta } = \frac{ - \sqrt{ {b}^{2} - 4ac} \times a }{c \times a} \\ \\ \frac{1}{ \alpha } - \frac{1}{ \beta } = \frac{ - \sqrt{ {b}^{2} - 4ac}}{c} \end{gathered}

α

1

β

1

=

αβ

β−α

=

c×a

b

2

−4ac

×a

α

1

β

1

=

c

b

2

−4ac

Now (3)

\begin{gathered} \frac{1}{ \alpha } + \frac{1}{ \beta } - 2 \alpha \beta \\ \\ = \frac{ \alpha + \beta }{ \alpha \beta } - 2 \alpha \beta \\ \\ = \frac{ - b}{c} - 2( \frac{c}{a} ) \\ \\ = - \frac{ab - {c}^{2} }{ac} \\ \\ = \frac{ {c}^{2} - ab}{ac} \end{gathered}

α

1

+

β

1

−2αβ

=

αβ

α+β

−2αβ

=

c

−b

−2(

a

c

)

=−

ac

ab−c

2

=

ac

c

2

−ab

Now (4)

\begin{gathered} \alpha^{2} \beta + \alpha \beta ^{2} \\ \\ = \alpha \beta ( \alpha + \beta ) \\ \\ = ( \frac{ - b}{a} )( \frac{c}{a} ) \\ \\ = \frac{ - bc}{a ^{2} } \end{gathered}

α

2

β+αβ

2

=αβ(α+β)

=(

a

−b

)(

a

c

)

=

a

2

−bc

Now (5)

\begin{gathered} { \alpha }^{4} + { \beta }^{4} \\ \\ = ( \alpha ^{2} + \beta ^{2} ) ^{2} - 2 { \alpha }^{2} { \beta }^{2} \\ \\ =( ( \alpha + \beta )^{2} - 2 \alpha \beta ) ^{2} - 2( { \alpha \beta })^{2} \\ \\ = {( (\frac{b ^{2} }{ {a}^{2} }) - 2 (\frac{c}{a}) ) }^{2} - 2( \frac{ {c}^{2} }{ {a}^{2} }) \\ \\ = (\frac{ {b}^{2} - 2ac }{ {a}^{2} } ) ^{2} - 2 \frac{ {c}^{2} }{ { a}^{2} } \\ \\ = \frac{ {b}^{4} + 4 {a}^{2} {c}^{2} - 4ac {b}^{2} - 2 {a}^{2} {c}^{2} }{ {a}^{4} } \\ \\ = \frac{ {b}^{2}(b ^{2} - 4ac) + 2 {a}^{2} {c}^{2} }{ {a}^{4} } \end{gathered}

α

4

4

=(α

2

2

)

2

−2α

2

β

2

=((α+β)

2

−2αβ)

2

−2(αβ)

2

=((

a

2

b

2

)−2(

a

c

))

2

−2(

a

2

c

2

)

=(

a

2

b

2

−2ac

)

2

−2

a

2

c

2

=

a

4

b

4

+4a

2

c

2

−4acb

2

−2a

2

c

2

=

a

4

b

2

(b

2

−4ac)+2a

2

c

2

Now (6)

\begin{gathered} \frac{1}{a \alpha + b} + \frac{1}{a \beta + b} \\ \\ = \frac{a( \alpha + \beta ) + 2b}{( a\alpha + b)( a \beta + b)} \\ \\ = \frac{ - b + 2b}{ {a}^{2}( \frac{c}{a} ) + {b}^{2} + ab( \frac{ -b }{a} )} \\ \\ = \frac{b}{ac + {b}^{2} - {b}^{2} } \\ \\ = \frac{b}{ac} \end{gathered}

aα+b

1

+

aβ+b

1

=

(aα+b)(aβ+b)

a(α+β)+2b

=

a

2

(

a

c

)+b

2

+ab(

a

−b

)

−b+2b

=

ac+b

2

−b

2

b

=

ac

b

Now (7)

\begin{gathered} \frac{ \beta }{a \alpha + b} + \frac{ \alpha }{a \beta + b} \\ \\ = \frac{ \beta (a \beta + b) + \alpha (a \alpha + b)}{(a \alpha + b)(a \beta + b)} \\ \\ = \frac{a( { \alpha }^{2} + { \beta }^{2} ) + b( \alpha + \beta )}{ {a}^{2} } \\ \\ = \frac{a( \frac{b ^{2} }{ {a}^{2} } - \frac{2c}{a}) - \frac{ {b}^{2} }{a} }{ {a}^{2} } \\ \\ = \frac{ \frac{ {b}^{2} - 2ac - {b}^{2} }{a} }{ {a}^{2} } \\ \\ = \frac{ - 2c}{ {a}^{2} } \\ \end{gathered}

aα+b

β

+

aβ+b

α

=

(aα+b)(aβ+b)

β(aβ+b)+α(aα+b)

=

a

2

a(α

2

2

)+b(α+β)

=

a

2

a(

a

2

b

2

a

2c

)−

a

b

2

=

a

2

a

b

2

−2ac−b

2

=

a

2

−2c

Now (8)

\begin{gathered}a( \frac{ { \alpha }^{2} }{ \beta } + \frac{ { \beta }^{2} }{ \alpha } ) + b( \frac{ \alpha }{ \beta } + \frac{ \beta }{ \alpha } ) \\ \\ = \frac{a( { \alpha }^{3} + { \beta }^{3}) + b( { \alpha }^{2} + { \beta }^{2} ) }{ \alpha \beta } \\ \\ = \frac{a( \frac{ {b}^{3} }{ {a}^{3} } + 3 \frac{bc}{ {a}^{2} } ) + b( \frac{ {b}^{2} }{ {a}^{2} } - 2 \frac{c}{a}) }{ \alpha \beta } \\ \\ = \frac{ {b}^{3} + 3abc + {b}^{3} - 2abc }{ {a}^{2} \times \frac{c}{a} } \\ \\ = \frac{2 {b}^{3} + abc }{ac} \end{gathered}

a(

β

α

2

+

α

β

2

)+b(

β

α

+

α

β

)

=

αβ

a(α

3

3

)+b(α

2

2

)

=

αβ

a(

a

3

b

3

+3

a

2

bc

)+b(

a

2

b

2

−2

a

c

)

=

a

2

×

a

c

b

3

+3abc+b

3

−2abc

=

ac

2b

3

+abc

Answered by anitasherakanu
0

x=a*2+b*2+c

x=2a+2b+c ans

Similar questions