Math, asked by rrohanbharadwaj, 10 months ago

if a and b are the zeros of quadratic polynomial p(x)= x^2 - 4x + 3 find the value of a^4 b^2 + a^2 b^4​

Answers

Answered by Anonymous
101

{\underline{\sf{Question}}}

If a and b are the zeros of quadratic polynomial \sf\:p(x)=x{}^{2}-4x+3find the value \sf\:a{}^{4}b{}^{2}+a{}^{2}b{}^{4}.

{\underline{\sf{Solution}}}

We have ,\sf\:p(x)=x{}^{2}-4x+3

Since , a and b are the zeros of quadratic polynomial p(x)

 \sf \implies \: p(x) = 0

 \sf \implies \: x {}^{2}  - 4x + 3 = 0

 \sf \implies \:  {x}^{2}  - 3x  - x + 3 = 0

 \sf \implies(x - 3)(x -1 ) = 0

 \sf \implies \: x = 3 \: or \: 1

Therefore , a and b are 3 and 1

We have to find the value of

 \sf {a}^{4} b {}^{2}  + a {}^{4} b {}^{2}

 \sf =  {a}^{2}  {b}^{2} (a {}^{2}  + b {}^{2} )

put the values of a and b

 \sf = 3 {}^{2}  \times 1 {}^{2} (3 {}^{2}  + 1 {}^{2} )

 =  \sf9(9 + 1)

 =  \sf9 \times 10 = 90

Answered by Anonymous
46

\LARGE{\sf{\purple{Given}}}\\

  • \sf{Quadratic\: polynomial\: = {x}^{2} - 4x + 3}\\

  • \sf{Zeros\: of \: quadratic\: polynomial\: = \: a \: and \: b }\\

\LARGE{\sf{\purple{To\: Find}}}\\

  • \sf{Value\: of \: {(a)}^{4}\times{(b)}^{2} + {(a)}^{2}\times{(b)}^{4} }\\

\LARGE{\sf{\purple{Solution }}}\\

We know that if any quadratic polynomial + bx +c = 0 have roots p and q , then

\underline{\sf{\implies p \times q = \frac{c}{a}}}\\

\underline{\sf{\implies p + q = - \frac{b}{a} }}\\

So now according to the question we have to find a⁴.b² + .b .

\sf{\implies a + b = \frac{-b}{a}, \: here \: b = -4 \: and \: a = 1}\\

{\underline{\sf{\implies a + b = -\frac{-4}{1} = 4 }}}\\

\sf{\implies a.b = \frac{c}{a} , \: here \: c = 3 \: and \: a = 1}\\

\underline{\sf{\implies a.b = \frac{3}{1} = 3 }}\\

Now taking a⁴.b² + b⁴.a²

\sf{\implies {a}^{4}.{b}^{2} + {a}^{2}.{b}^{4} }\\

\sf{Taking\: {a}^{2}.{b}^{2} \: common }\\

\sf{\implies {a}^{2}.{b}^{2}[ {a}^{2} + {b}^{2}\:\:\:\: eq\:1st}\\

\sf{\implies {a}^{2}+{b}^{2} \: can \: be \: written\: as {(a+b)}^{2} - 2ab }\\

\sf{\implies {a}^{2}.{b}^{2} \: can \: be \: written\: as \: {(a.b)}^{2}}\\

\underline{\sf{\implies {( a.b)}^{2} = {3}^{2} → \: 9}}\\

\sf{\implies {(a+b)}^{2} - 2ab = {(4)}^{2} - 2(3) }\\

\underline{\sf{\implies {(a+b)}^{2} - 2ab = 16 -6 → \: 10}}\\

Now putting these values in eq 1st :-

\sf{\implies {(a.b)}^{2} [ {(a+b)}^{2}-2ab ] = 9 [10] }\\

\underline{\sf{\purple{\implies {a}^{4}.{b}^{2} + {b}^{4} .{a}^{2} = 90}}}\\

Similar questions