Math, asked by lalasuman75, 1 year ago

If a and b are the zeros of the given quadratic polynomial f(x)= 5x2 - 7x + 1, find the
value 1/a + 1/b

Answers

Answered by Anonymous
77

Given that a and b are the zeroes of the polynomial f(x) = 5x² - 7x + 1

here, we've to find the value of

1/a + 1/b

so first of all, we needa find a and b (zeroes of the polynomial)

standard form of quadratic equation = ax² + bc + c = 0

here, a = 5, b = -7 and c = 1

by using quadratic formula, we get

 \tt x =  \frac{ - b± \sqrt{( {b}^{2} - 4ac) } }{2a}  \\  \\  \tt =  \frac{ - ( - 7)±  \sqrt{( { - 7})^{2}  -( 4 \times 5 \times 1)}  }{(2 \times 5)}  \\  \\  \tt =  \frac{7± \sqrt{49 - 20} }{10}  \\  \\   \tt =  \frac{7± \sqrt{29} }{10}

therefore a = (7 + √29)/10 and b = (7 - √29)/10

hence, the value of 1/a + 1/b :-

= 1/(7 + √29) + 1/(7 - √29)

 \tt  \scriptsize=  \frac{10(7 -  \sqrt{29} )}{(7 +  \sqrt{29} )(7 -  \sqrt{29} )}  +  \frac{10(7 +  \sqrt{29} )}{(7 +  \sqrt{29})(7 -  \sqrt{29}  )}  \\  \\  \tt =  \frac{70 -  10\sqrt{29} }{( {7})^{2}  - ( { \sqrt{29} })^{2} }  +  \frac{70 +  10\sqrt{29} }{( {7})^{2} - ( { \sqrt{29} })^{2}  }  \\  \\  \tt =  \frac{70 -   \cancel{10\sqrt{29} } + 70 +   \cancel{10\sqrt{29}} }{49 - 29}  \\  \\  \tt =  \frac{140}{20} =  \boxed{ 7 }

Answered by Blaezii
43

Answer :

\textsf{The value of }\dfrac{1}{a}+\dfrac{1}{b}\textsf{is 7}

Step-by-step explanation :

Given that :

If a and b are the zeros of the quadratic polynomial  :

f(x)=5x^2-7x+1

To Find :

\textsf{The value of }\dfrac{1}{a}+\dfrac{1}{b}

Solution :

f(x)=5x^2-7x+1

We know that :

\bigstar\;\textsf{\underline{\underline{Sum of zeroes - }}}}\\\\\it \implies a+b=\dfrac{-b}{a}=\dfrac{7}{5}\\\\\bigstar \textsf{\underline{\underline{Product of zeroes - }}}\\\\\it \implies abc=\dfrac{c}{a}=\dfrac{1}{5}

Put the given values :

\tt \implies \dfrac{1}{a}+\dfrac{1}{b}\\\\\implies \dfrac{b+a}{ab}\\\\\implies \dfrac{\dfrac{7}{5}}{\dfrac{1}{5}}=7

Hence,

The Correct answer is 7.

Similar questions