Math, asked by armanmd1234567890, 7 months ago

If a and b are the zeros of the polynomial f (x) =x2-5x+k such that a-b=1,find the value of k​

Answers

Answered by kaushik05
27

Given :

• a and b are the zeroes of f(x) = x² - 5x + k .

• a - b = 1

To find :

• The value of k .

Solution :

• f (x) = x² -5x + k .

Here ,

a = 1 , b = -5 and c = k .

• Sum of Zeroes ( a+b) = -b/a = 5 .

• product of zeroes (ab) = c/a = k .

 \implies \: a \:  - b = 1 \\  \\  \implies \:  \sqrt{ {(a + b)}^{2} - 4ab }  = 1 \\  \\ \implies \:  \sqrt{ {(5)}^{2}  - 4(k) = 1}  \\  \\  \implies \: 25 - 4k = 1 \\  \\  \implies \: 25 - 1 = 4k \\  \\  \implies \: 24 = 4k \\  \\  \implies \: k =   \cancel{\frac{24}{4} } \\  \\  \implies \: k \:  = 6

Hence , the value of k is 6.

Answered by sara122
15

Answer:

\boxed{Given} :

  • • a and b are the zeroes of f(x) = x² - 5x + k .

  • • a - b = 1

To find :

• The value of k .

Solution :

• f (x) = x² -5x + k .

Here ,

• a = 1 , b = -5 and c = k .

• Sum of Zeroes ( a+b) = -b/a = 5 .

• product of zeroes (ab) = c/a = k .

x2-5x+k

Here, a=1, b=-5 and c=k

Now, α+ β = -b/a= -(-5)/1= 5

α*β = c/a= k/7= k

Now,α - β =1

Squaring both sides, we get,

(α - β)2=12

⇒ α2 + β2 - 2αβ = 1

⇒ (α2 + β2 + 2αβ) - 4αβ = 1

⇒ (α +β)2 -4αβ =1

⇒ (5)2-4k=1

⇒ -4k= 7-25

⇒ -4k= -24

⇒ k=6 So the value of k is 6.

Similar questions