Math, asked by ujjawal4040, 1 year ago

If a and B are the zeros of the polynomial f(x)= x² + px+q, form a polynomial whose zeros are (a+b)(a+b)and(a-b)(a-b)​

Answers

Answered by jestinmelque2905
12

Answer:

let 2 zeroes be a and b of  polynomial  x² + px + q = 0

sum of roots = a + b = -p/1 = -p

products of roots = ab = q/1 = q

(a + b)² = a² + b² + 2ab ⇒  a² + b² = p² - 2q    

(a-b)² = a² + b² -2ab =  p² - 2q -2q = p² - 4q    

now ques asks for new quadratic eq whose roots are (a+b) ²  and  (a-b)²

so sum of new roots are = (a +b)² + (a-b)² = p² + p² -4q = 2p² - 4q

and  product of roots =  (a+b)²(a-b)² =  (p²)² (p²-4q)² = p⁴ (p⁴ +16q² + 8p²q)

hence new quadratic eq gonna be =

x² - x(sum of roots) + (products of roots)

x² - x(2p² - 4q) + p⁴(p⁴ + 16q² +8p²q) = 0

further  u can simplify.

hope my ans is correct ...........doubts , then enquire.

Answered by shreya882426
3

k({x}^{2}  - 2( {p}^{2}  - 2q)x +  {p}^{2}( {p}^{2}  - 4 q))

Step-by-step explanation:

let \:  \alpha  \: and  \: \beta  \: be \: the \: zeroes \: of \: polynomial \: f(x)  =  {x}^{2} +  px +  q \\  \alpha  +  \beta  =  - p \\  \alpha  \beta  = q

  { \alpha }^{2} +  { \beta  }^{2}  = ( { \alpha  +  \beta })^{2}  - 2 \alpha   \beta  \\  { \alpha }^{2}   +  { \beta }^{2} =  ({p})^{2}  - 2q  \\ { \alpha }^{2}  +  { \beta }^{2} =  {p}^{2}  - 2q   \\ sum = ( { \alpha  +  \beta })^{2}  + ( { \alpha  -  \beta )}^{2}

 =  {p}^{2}  - 2q  + 2q + {p}^{2}  - 2q   -  2q \\  = 2 {p}^{2}  - 4p \\ 2(  {p}^{2}  - 2q) \\  product \:  = ( { \alpha   + \beta })^{2}  \times ( { \alpha    -  \beta })^{2} \\  =  ({p} ) {}^{2}  \times ( {p}^{2}  - 2q - 2q) \\  =  {p}^{2} ( {p}^{2}  - 4q) \\  polynomial = k( {x}^{2}  + (sum) x + product \\  = k( {x}^{2}   -  2(  {p}^{2}  - 2q) x + {p}^{2} ( {p}^{2}  - 4q)) \: where \: k \: is \: any \: non - zero \: constant

Similar questions