Math, asked by nishitharao20, 2 months ago

if a and b are the zeros of the polynomial px²+qx+r then find the values of 1/x + 1/b ​

Answers

Answered by thakurumashankar273
0

Answer:

The value of (p+q+r)^2=q^2-4pr(p+q+r)

2

=q

2

−4pr

Step-by-step explanation:

The given quadratic poynomial:

px^2+qx+rpx

2

+qx+r

To find, the value of (p+q+r)^2=?(p+q+r)

2

=?

The sum of the roots,

\dfrac{B}{B-1}+\dfrac{B+1}{B}=-\dfrac{q}{p}

B−1

B

+

B

B+1

=−

p

q

The product of the roots,

\dfrac{B}{B-1}.\dfrac{B+1}{B}=\dfrac{r}{p}

B−1

B

.

B

B+1

=

p

r

∴ (\dfrac{B}{B-1}-\dfrac{B+1}{B})^2=(\dfrac{B}{B-1}+\dfrac{B+1}{B})^2-4(\dfrac{B}{B-1}.\dfrac{B+1}{B})(

B−1

B

B

B+1

)

2

=(

B−1

B

+

B

B+1

)

2

−4(

B−1

B

.

B

B+1

)

⇒ (\dfrac{B}{B-1}-\dfrac{B+1}{B})^2=(-\dfrac{q}{p} )^2-4(\dfrac{r}{p})(

B−1

B

B

B+1

)

2

=(−

p

q

)

2

−4(

p

r

)

⇒ (\dfrac{B}{B-1}-\dfrac{B+1}{B})^2=\dfrac{q^2-4pr}{p^2}(

B−1

B

B

B+1

)

2

=

p

2

q

2

−4pr

⇒ (p+q+r)^2=q^2-4pr(p+q+r)

2

=q

2

−4pr

Hence, the value of (p+q+r)^2=q^2-4pr(p+q+r)

2

=q

2

−4pr

Similar questions