Math, asked by reina24, 1 month ago

if a and b are the zeros of the polynomial x^2 - 8x +k such that a^2 +b^2 =40 find the value of k​

Answers

Answered by xSoyaibImtiazAhmedx
3

\Huge{\color{red}{\fbox{\textsf{\textbf{♠Solution ♠:-}}}}}

Given :-

  • p(x) - 8x + k
  • zeros a , b

So,

Sum of zeros

 \bold{→ a + b =  \frac{ - ( - 8)}{1} }

  \boxed{\bold {→ a + b = 8}}

Product of zeros

→ ab =  \frac{k}{1}

 \boxed {\bold{→ ab = k }}

Again ,

 \bold{ \:  \:  \:  \:  {a}^{2}  +  {b}^{2}  = 40}

 \implies \: {(a + b)}^{2}  - 2ab = 40

Substituting the values we get ,

 \implies \:  {8}^{2}  - 2k = 40

 \implies \: 64  - 2k = 40

\implies \: 2k = 64 - 40

\implies \: 2k = 24

\implies  \: k =  \frac{24}{2}

\implies \:  \boxed{\bold{ k =12}}

\Large{\colorbox{yellow}{\underline{\underline{♠Answer♠:—\:\:k\:\:=\:12} }}}

Similar questions