Math, asked by sweetguy81, 2 months ago

If a and b are the zeros of the polynomial x2-4x+3 find the polynomial whose zeros are 1+β/α and 1+α/β​

Answers

Answered by ImperialGladiator
21

Answer:

 \boldsymbol{  \implies \: {x}^{2}  -  \dfrac{16}{3} x +  \dfrac{16}{3} }

Explanation:

Given polynomial,

 \boldsymbol{\implies \:  {x}^{2} - 4x + 3}

On comapring with the general form of equation i.e., \boldsymbol{{ax}^{2} - bx + c}

We get,

  • a = 1
  • b = -4
  • c = 3

By quadratic formula,

 \boldsymbol{\implies x =  \dfrac{ - b \pm \sqrt{ {(b)}^{2}  - 4ac} }{2a} }

Substitute the values,

 \boldsymbol{\implies x =  \dfrac{ - ( - 4 )\pm \sqrt{ {( - 4)}^{2}  - 4(1)(3)} }{2(1)} }

 \boldsymbol{\implies x =  \dfrac{ 4 \pm \sqrt{ 16  - 12} }{2} }

 \boldsymbol{\implies x =  \dfrac{ 4 \pm \sqrt{ 4} }{2} }

 \boldsymbol{\implies x =  \dfrac{ 4 \pm 2 }{2} }

 \boldsymbol{\implies x =  \dfrac{  4  -  2 }{2}  \: { \sf \: or} \:  \dfrac{  4 + 2}{2} }

 \boldsymbol{\implies x =  \dfrac{ 2 }{2}  \: { \sf \: or} \:  \dfrac{6}{2} }

\boldsymbol{ \implies \: x = 1 \: { \rm \: or} \: 3}

 \sf \therefore \:  \alpha   =  \: 1 \: and \: \beta  = 3

Now,

Given zeros,

 \sf = 1 +  \dfrac{ \beta }{ \alpha }  \: \:  and \:  \: 1 +  \dfrac{ \alpha }{ \beta }

Substituting the values,

 \sf = \bigg( 1 +  \dfrac{3}{1} \bigg)  \: and \:  \bigg(1 +  \dfrac{1}{3}  \bigg)

 \sf = ( 1 +  3)  \: and \:  \bigg( \dfrac{4}{3}  \bigg)

 \sf = 4 \: and \:  \dfrac{4}{3}

Then,

Sum of the new zeros is

 = 4 +  \dfrac{4}{3}  \\  =  \dfrac{16}{3}  \:  \:  \:  \:  \:

And also,

Product of zeros is

 = 4 \times  \dfrac{4}{3}  \\  =  \dfrac{16}{3}  \:  \:  \:  \:  \:  \:

Required polynomial is given by,

\boldsymbol{\implies \:  {x}^{2} -  {\sf(sum \: of \: the \: zeros)}x +  \sf \: product \: of \: zeros}

\boldsymbol{\implies \:  {x}^{2} -  {\sf\dfrac{16}{3} }x +  \sf \: \dfrac{16}{3} }

Similar questions