If a and B are the zeros of the quadratic polynomial f(x) = x+ - p(x + 1) - c, show that
(a + 1) (B + 1) = 1-c.
PLEASE ANSWER THE QUESTION IF YOU DO NOW IT.
!!THANK YOU!!
Answers
Hey!
___________________
Given,
Alpha and beta are the zeroes of the quadratic polynomial x^2 - p (x + 1) - c
Alpha ( @ )
Beta ( ß )
x^2 - p ( x + 1 ) - c
x^2 - px - p - c
x^2 - px - (p+c)
Comparing with ax^2 + bx + c
a = 1
b = - p
c = - (p+c)
We know,
Alpha + Beta = - b/a = - (-p) = p
Alpha × Beta = c/a = - ( p+c )
Thus,
( Alpha + 1 ) ( Beta + 1 )
= @ß + @ + ß + 1
= - (p+c) + p + 1
= - p - c + p + 1
= 1 - c
Thus, ( Alpha + 1 ) ( Beta + 1 ) = 1 - c
___________________
Hope it helps...!!!
Answer:
1
Step-by-step explanation:
ANSWER
(i) Given that alpha and beta are roots of quadratic equation
f(x)=x
2
−p(x+1)−c=x
2
−px−p−c=x
2
−px−(p+c)
Comparing with ax
2
+bx+c,
we have, a=1, b=−p and c=−(p+c)
∴α+β=−b/a=
1
−(−p)
=p and α×β=
a
c
=
1
−(p+c)
=−(p+c)
=(α+1)×(β+1)=(α×β)+α+β+1=−(p+c)+p+1
=−p−c+p+1
=1−c
The given equation is x
2
−p(x+1)−q=0 or x
2
−px−(p+q)=0
Therefore the sum of the roots α+β=p and product of the roots αβ=−(p+q)
Therefore we have,
=
α
2
+2α+q
α
2
+2α+1
+
β
2
+2β+q
β
2
+2β+1
=
α
2
+2α−α−β−αβ
(α+1)
2
+
β
2
+2β−α−β−αβ)
(β+1)
2
(substituting the value of q)
=
(α−β)(α+1)
(α+1)
2
+
(β−α)(β+1)
(β+1)
2
=
α−β
α+1
−
α−β
β+1
=1