If a and B are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a
a-1 B-1
polynomial whose roots are (i) a +2,B+2 (ii)
a +1' B + 1
Answers
Answered by
0
Step-by-step explanation:
Given, x = a cos theta and y = b sin theta. Substituting for x and y ,
b²x² + a²y² - a²b² = b²a² cos² theta + a²b² sin² theta - a²b²
= a²b² (cos² theta + sin² theta) - a²b²
= a²b² . 1 - a²b² (Using the trigonometric identity cos² theta + sin² theta = 1)
= a²b² - a²b² = 0 (Proved)
Work 2:
x = a cos theta , y = b sin theta . Substituting for x,
b²x² + a²y² - a²b² = b²a² cos² theta - a²b² + a²y²
= b²a²(cos² theta-1) + a²y²
= b²a²(-sin² theta) + a²y² = -a²(b²sin² theta) + a²y² Substitute y for b sin theta.
=-a²y² + a²y²
= 0 (Proved)
Similar questions
Social Sciences,
3 months ago
Science,
3 months ago
Biology,
3 months ago
Math,
6 months ago
Social Sciences,
6 months ago
Biology,
1 year ago
Chemistry,
1 year ago
English,
1 year ago