Math, asked by santoshpatil1063, 19 days ago

If a and b are the zeros of the quadratic
polynomial kx2 -5x + 4 such that (a + b)2 = 25
then the value of k is:
a​

Answers

Answered by Anonymous
22

 \footnotesize \blue ➱\tt{   \: Find:-  }

 \footnotesize ➱ \tt\blue{ \: Value  \: of \:  k  }

 \:

 \footnotesize \blue ➱\tt{   \: Given:- }

 \footnotesize ➱ \tt\blue{ \: a \:  and \:  b \:  are \:  the \:  zeroes }

 \footnotesize ➱\tt \blue{  \:   {(a+b)}^{2} = 25}

 \:

 \footnotesize \blue ➱\tt{  \:   Solution:- }

 \:

 \footnotesize \blue ➱\tt{  \: {kx}^{2} - 5x + 4 }

 \:

 \footnotesize \blue ➱ \tt{  \: Sum \:  of  \: zeroes(a+b) =  \: } \blue{   \frac{ - b}{a} }

 \footnotesize \blue ➱ \tt{  \: Sum \:  of  \: zeroes(a+b) =  \: } \blue{   \frac{-(-5)}{k} }

 \footnotesize \blue ➱ \tt{  \: Sum \:  of  \: zeroes(a+b) =  \: } \blue{   \frac{5}{k} }

 \:

 \footnotesize \blue ➱\tt{   {(a+b)}^{2} = 25}

\blue ➱ \tt{  \:    (\frac{5}{k})^{2} =  \: } \blue{  25 }

\blue ➱ \tt{  \:     \frac{25}{ {k}^{2} }  =  \:  } \blue{ 25 }

 \:

 \footnotesize ➱ \tt\blue{ \: Cross \:  Multiplication  }

 \:

 \footnotesize\blue ➱ \tt{  \:    25 =  \:  } \blue{ 25{k}^{2} }

\blue ➱ \tt{   \: \frac{25}{25} = \:  } \blue{ {k}^{2}}

\blue ➱ \tt{   \cancel{ \: \frac{25}{25}} = \:  } \blue{ {k}^{2}}

 \footnotesize\blue ➱ \tt{  \:  1 =  \: } \blue{ {k}^{2}}

 \footnotesize\blue ➱ \tt{  \:   \sqrt{1}  =  \: } \blue{ k}

\boxed{ \boxed{\footnotesize\blue ➱ \tt{  \:   1  =  \: } \blue{ {k}}}}

Similar questions