Math, asked by thesrijaasaha07, 9 months ago

if A and B are two complementary angle s .Show that tanB + sinB=sinB/sinA*(1+cosB)​

Answers

Answered by shinchanisgreat
0

Answer:

 =  >  \tan(   \beta )  +  \sin( \beta )  =  \frac{ \sin( \beta ) }{ \sin( \alpha ) }  \times (1 +  \cos( \beta ))  \\  =  >  \frac{ \sin( \beta ) }{ \cos( \beta ) }  +  \sin( \beta )  =  \frac{ \sin( \beta ) }{  \sin( \frac{\pi}{2 }  -  \beta ) }   \times (1 +  \cos( \beta )  )\\  =  >  \sin( \beta )  \frac{ (1 +  \cos( \beta ) )}{ \cos( \beta ) } =  \frac{ \sin( \beta ) }{ \cos( \beta ) }  \times (1 +  \cos( \beta ) ) \\  =  >  \tan( \beta ) (1 +  \cos( \beta ))  =  \tan( \beta ) (1 +  \ \cos( \beta ) ) \\ hence \:  \:  \:  \: proved

Hope this answer helps you ^_^ !

Similar questions
Math, 9 months ago