Math, asked by 123lokendra, 2 months ago

If A and B are two events and P (A) = 2/3, P(B) =3/5, P AU   B

= 5/6, then the value of

  ' '

P A /B

is :​

Answers

Answered by mathdude500
11

Given : -

\rm :\longmapsto\:P(A) = \dfrac{2}{3}

\rm :\longmapsto\:P(B) = \dfrac{3}{5}

\rm :\longmapsto\:P(A \:  \cup \: B) = \dfrac{5}{6}

To Find :-

\rm :\longmapsto\:P(A |B)

Solution :-

We know that,

\rm :\longmapsto\:P(A \: \cup \:B) = P(A) + P(B) - P(A \: \cap \:B)

On substituting the given values, we get

\rm :\longmapsto \: \dfrac{5}{6}  = \dfrac{2}{3}  + \dfrac{3}{5}  - P(A \: \cap \:B)

\rm :\longmapsto \:P(A \: \cap \:B)  = \dfrac{2}{3}  + \dfrac{3}{5}   - \dfrac{5}{6}

\rm :\longmapsto \:P(A \: \cap \:B)  = \dfrac{20 + 18 - 25}{30}

\rm :\longmapsto \:P(A \: \cap \:B)  = \dfrac{38 - 25}{30}

\bf :\longmapsto \:P(A \: \cap \:B)  = \dfrac{13}{30}

Now,

Consider,

\rm :\longmapsto\:P(A |B)

 \rm \:  =  \: \dfrac{P(A \: \cap \:B)}{P(B)}

 \rm \:  =  \: \dfrac{13}{30}  \times \dfrac{5}{3}

 \rm \:  =  \: \dfrac{13}{18}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \blue{\underbrace{\red{\boxed{\bf \:P(A |B) = \dfrac{13}{18}}}}}

Additional Information :-

\red{\boxed{\sf \:P(A |B) = \dfrac{P(A \: \cap \:B)}{P(B)}  = \dfrac{n(A \: \cap \:B)}{n(B)} }}

\red{\boxed{\sf \:P(B |A) = \dfrac{P(A \: \cap \:B)}{P(A)}  = \dfrac{n(A \: \cap \:B)}{n(A)} }}

\red{\boxed{\sf \:P(A \: \cap \:B') = P(A)- P(A \: \cap \:B)}}

\red{\boxed{\sf \:P(A' \: \cap \:B) = P(B)- P(A \: \cap \:B)}}

\red{\boxed{\sf \:P(A' \: \cap \:B') = 1- P(A \: \cup \:B)}}

\red{\boxed{\sf \:P(A' \: \cup \:B') = 1- P(A \: \cap \:B)}}

Similar questions