Math, asked by rajeshsinghthakur031, 2 months ago

If A and B are two independent events, then the probability of
occurrence of at least one of A and B is equal to 1 - P(A') P(B'). Prove.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that A and B are two independent events.

\rm\implies\:P(A \:  \cap \:B) = P(A)P(B) -  -  - (1)

Consider,

Probability of occurrence of atleast one of A and B

\rm \:  \:  =  \:P(A\cup \:B)

\rm \:  \:  =  \:P(A) + P(B) - P(A\cap \:B)

\rm \:  \:  =  \:P(A) + P(B) - P(A)P(B)

\red{\bigg \{ \because \: using \: (1)\bigg \}}

\rm \:  \:  =  \:P(A) + P(B)(1 - P(A))

\rm \:  \:  =  \:P(A) + P(B)P(A')

\red{\bigg \{ \because \:P(A) + P(A') = 1 \bigg \}}

\rm \:  \:  =  \:1 - P(A') + P(B)P(A')

\rm \:  \:  =  \:1 - P(A')(1 - P(B))

\rm \:  \:  =  \:1 - P(A')P(B')

\bf\implies \:P(A\cup \:B) =  \:1 - P(A')P(B')

Hence, Proved

Additional Information :-

Question :- If A and B are two independent events, prove that A and B' are independent.

Solution :-

Given that A and B are two independent events.

\rm\implies\:P(A \:  \cap \:B) = P(A)P(B) -  -  - (1)

Consider,

\rm :\longmapsto\:P(A\cap \:B')

\rm \:  \:  =  \:P(A) - P(A\cap \:B)

\rm \:  \:  =  \:P(A) - P(A)P(B)

\red{\bigg \{ \because \: using \: (1)\bigg \}}

\rm \:  \:  =  \:P(A) (1- P(B))

\rm \:  \:  =  \:P(A)P(B')

\red{\bigg \{ \because \:P(A) + P(A') = 1 \bigg \}}

Hence,

\rm :\longmapsto\:P(A\cap \:B') = P(A)P(B')

\bf\implies \:A \: and \: B' \: are \: independent

More results

\rm :\longmapsto\:P(A'\cap \:B) = P(B) - P(A\cap \:B)

\rm :\longmapsto\:P(A'\cap \:B') =1 - P(A\cup \:B)

\rm :\longmapsto\:P(A'\cup \:B') =1 - P(A\cap \:B)

\rm :\longmapsto\:P(A|B) = \dfrac{P(A\cap \:B)}{P(B)} = \dfrac{n(A\cap \:B)}{n(B)}

Similar questions