Math, asked by gakul57, 1 year ago

if A and B are two non empty sets and A×B=A×C..Then show that B=C

Answers

Answered by sciencemathsharsh
5
If A×B=A×C
B=C×A/A
B=C
Hence showed
Answered by GalacticCluster
11

Answer:

Let b be an arbitrary element of B. Then,

 \\  \sf \: ( \: a,b) \:  \in \: A \times B\:  \: for \:  \: all \:  \: a \:  \in \:  A \\  \\  \\   \implies\sf \: ( \: a,b) \:  \in \: A \times C \:  \: for \:  \: all \:  \: a \:  \in \:  A \\  \\  \\  \implies \sf \: b \:  \in \:  \: C \\  \\

Thus,

 \\  \sf \: b \:  \in \: B \implies \: b \:  \in \: C \\  \\  \\  \therefore \sf \qquad \blue{ B  \: \subset \:   C}   \qquad \quad \qquad \: (1)\\

Now, let c be an arbitrary element of C. Then,

 \\  \sf \: ( \: a,c) \:  \in \: A \times C \:  \: for \:  \: all \:  \: a \:  \in \:  \: A \\  \\  \\  \implies \sf \: ( \: a,c) \:  \in \: A \times B \:  \: for \:  \: all \:  \: a  \:  \in \: aA \\  \\  \\  \implies \sf \: C \:  \in \: B \\

Thus,

 \\  \sf \: C  \:  \in \: C \implies \: c \:  \in \: B\\  \\  \\  \therefore \qquad \sf \green{C\: \subset \: B}  \qquad \quad \qquad \:  \: (2)\\  \\    \:

From (1) and (2), we get B = C.

Similar questions