Math, asked by sharmavansh197900, 3 months ago

if a and b are two positive real number such that 2(a+b) = 5√ab(where a > b) then the ratio of number \frac{a}{b} is:

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\textsf{a and b are two positive real numbers}

\mathsf{such\;that\;2(a+b)=5\sqrt{ab}\;\;(a>b)}

\underline{\textbf{To find:}}

\mathsf{The\;ratio\;\dfrac{a}{b}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{2(a+b)=5\sqrt{ab}}

\textsf{Squaring on bothsides, we get}

\mathsf{4(a+b)^2=25\,ab}

\mathsf{4(a^2+b^2+2\,ab)=25\,ab}

\mathsf{4a^2+4b^2+8\,ab=25\,ab}

\mathsf{4a^2-17\,ab+4b^2=0}

\mathsf{4a^2-\,ab-16\,ab+4b^2=0}

\mathsf{a(4a-b)-4b(4a-b)=0}

\mathsf{(a-4b)(4a-b)=0}

\mathsf{a-4b=0\;\;\;(or)\;\;\;4a-b=0}

\mathsf{a=4b\;\;\;(or)\;\;\;4a=b}

\mathsf{\dfrac{a}{b}=4\;\;\;(or)\;\;\;\dfrac{a}{b}=\dfrac{1}{4}}

\mathsf{But,\;a>b\;\implies\;\dfrac{a}{b}\,>\,1}

\therefore\boxed{\mathsf{\dfrac{a}{b}=4}}

Similar questions