Math, asked by rmohamedshohib, 8 months ago

if a and b are two sets so that n(b-a)=2n(a-b) =4n(aΠb) and if n(aub)=14,then find n(p(a))​

Answers

Answered by MaheswariS
19

\textbf{Given:}

\mathsf{n(B-A)=2\,n(A-B)=4\,n(A{\cap}B)}

\mathsf{and\;n(A{\cup}B)=14}

\textbf{To find:}

\mathsf{n[P(A)]}

\textbf{Solution:}

\mathsf{n(B-A)=2\,n(A-B)=4\,n(A{\cap}B)=k(say)}

\mathsf{n(B-A)=k}

\mathsf{n(A-B)=\dfrac{k}{2}}

\mathsf{n(A{\cap}B)=\dfrac{k}{4}}

\textbf{We know that,}

\boxed{\mathsf{n(A{\cup}B)=n(A-B)+n(A{\cap}B)+n(B-A)}}

\implies\mathsf{14=\dfrac{k}{2}+\dfrac{k}{4}+k}

\implies\mathsf{14=\dfrac{2k+k+4k}{4}}

\implies\mathsf{14=\dfrac{7k}{4}}

\implies\mathsf{2=\dfrac{k}{4}}

\implies\boxed{\mathsf{k=8}}

\mathsf{Now,}

\mathsf{n(A)=n(A-B)+n(A{\cap}B)}

\mathsf{n(A)=\dfrac{k}{2}+\dfrac{k}{4}}

\mathsf{n(A)=\dfrac{3k}{4}}

\mathsf{n(A)=\dfrac{3(8)}{4}}

\mathsf{n(A)=3(2)=6}

\boxed{\mathsf{If\;n(A)=m\implies\;n[P(A)]=2^m}}

\implies\mathsf{n[P(A)]=2^6}

\implies\boxed{\mathsf{n[P(A)]=64}}

\textbf{Find more:}

Answered by 11426afreen
5

Answer:

Thanks teacher for your answers

Similar questions