If A and B are two sets such that
n(A-B)=24, n(B-A)=19 and
n(ANB)=11 then find
(i) n(A), (ii) n(B), (iii) n(AUB).
Answers
Answered by
4
Answer:
Step-by-step explanation:
n(A-B)=24, n(B-A)=19 and
n(A∩B)=11
====================
(I) n(A-B)=n(A)-n( A∩B)
so 11=n(A) -11
n(A)=11+11=22
******************************
(ii) n(B−A)=n(B)-n(A∩B)
So 19=n(B)-11
n(B)=19+11=30
***************************
(iii) n( A∪B) =n(A)+n(B)-( A∩B)
n( A∪B)=22+30-11=52-11=41
Similar questions
English,
4 months ago
Political Science,
4 months ago
India Languages,
4 months ago
English,
9 months ago
Math,
1 year ago
Math,
1 year ago