Physics, asked by sainikshith52, 6 months ago

If Aˆ

and Bˆ

are two unit vectors and their resultant is also another unit vector Cˆ

. Find

angle between A

 and B​

Answers

Answered by Anonymous
6

Answer:

Let \large\rm { \vec { a} \vec{b} } be two unit vectors whose sum is also a unit vector \large\rm { \vec { c}}

\large\rm { \vec { a } + \vec {b}  = \vec {c} .......(1) \ and \ \vec { |a| } = \vec  {|b|} = \vec  {|c| } = 1}

Now magnitude of sum of \large\rm { \vec { a} \vec{b} } is

\large\rm { | \vec {a} + \vec {b} | = | \vec {a} |^{2} + |\vec {b} |^{2} + 2( \vec {a} \cdot \vec {b} ) }

\large\rm { → \vec {a} \cdot \vec {b} = - \frac {1}{2}}

Magnitude of their difference is given b

\large\rm { | \vec {a} - \vec {b} | = | \vec {a} |^{2} + |\vec {b} |^{2} + 2 \vec {a} \cdot \vec {b}  }

\large\rm { → |a-b| = \sqrt {3} } ✓✓✓

Similar questions