Math, asked by abdullahtaswar123, 10 months ago

If a and b are two vectors along two sides of a triangle whose area is 20 squares units.Find the area of another triangle with vectors along its two sides are 3a+b and 2a+3b

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{$\vec{a}$ and $\vec{b}$ are two vectors along two}

\text{sides of a triangle whose area is 20 square units}

\textbf{To find:}

\text{The area of another triangle with vectors along}

\text{its two sides are $3\vec{a}+\vec{b}$ and $2\vec{a}+3\vec{b}$}

\textbf{Soluition:}

\text{Area of triangle having sides $\vec{a}$ and $\vec{b}$ is 20 square units}

\implies\,\dfrac{1}{2}|\vec{a}{\times}\vec{b}|=20

\implies|\vec{a}{\times}\vec{b}|=40

\text{Now,}

\text{Area of triangle having sides $3\vec{a}+\vec{b}$ and $2\vec{a}+3\vec{b}$}

=\dfrac{1}{2}|(3\vec{a}+\vec{b}){\times}(\vec{a}+3\vec{b})|

=\dfrac{1}{2}|3(\vec{a}{\times}\vec{a})+9(\vec{a}{\times}\vec{b})+(\vec{b}{\times}\vec{a})+3(\vec{b}{\times}\vec{b})|

=\dfrac{1}{2}|3(\vec{0})+9(\vec{a}{\times}\vec{b})-(\vec{a}{\times}\vec{b})+3(\vec{0})|

=\dfrac{1}{2}|9(\vec{a}{\times}\vec{b})-(\vec{a}{\times}\vec{b})|

=\dfrac{1}{2}|8(\vec{a}{\times}\vec{b})|

=\dfrac{1}{2}[8|\vec{a}{\times}\vec{b}|]

=4|\vec{a}{\times}\vec{b}|

=4(40)

=160\;\text{square units}

\textbf{Answer:}

\textbf{The area of another triangle with vectors along}

\textbf{its two sides are $3\vec{a}+\vec{b}$ and $2\vec{a}+3\vec{b}$ is 160 square units}

Similar questions