Math, asked by sumitnagpal6459, 10 months ago

if a and b are unit vector and theata is the acute angle between them then |a-b|=​

Answers

Answered by Anonymous
28

\underline{ \boxed{ \bold{ \mathfrak{ \purple{ \huge{Answer}}}}}} \\  \\   \implies\rm \:  | \vec{a}|  =  | \vec{b}|  = 1 \: unit  \\  \\  \implies\rm \:  \theta = angle \: between \:  \vec{a} \: and \:  \vec{b} \\  \\  \implies \rm \: let \:  | \vec{R}|  =  | \vec{a} -  \vec{b}|  \\  \\  \therefore \: \rm \:  | \vec{R}|  =  \sqrt{ { | \vec{a}| }^{2} +  { | \vec{b}| }^{2}   - 2 | \vec{a}|  | \vec{b}| cos \theta}  \\  \\   {  \rm\tiny{ \red{ \dag \: putting \: values \: of \:   | \vec{a}| \: and \:  | \vec{b}| }}} \\  \\  \star \rm \:   | \vec{R}|  =  \sqrt{ {1}^{2} +  {1}^{2}   - 2(1)(1)cos \theta}  \\  \\  \star \rm \:  | \vec{R}|  =  \sqrt{2(1 - cos \theta)}  \\  \\  \star \rm \:  | \vec{R}|  =  \sqrt{2(2 {sin}^{2}  \frac{ \theta}{2} )}  =  \sqrt{4 {sin}^{2} \frac{ \theta}{2}  }  \\  \\  \therefore \:  \underline{ \boxed{ \rm{ \bold{ \orange{ | \vec{R}|  = 2sin \frac{ \theta}{2} }}}}} \:  \red{ \star}

Similar questions