Math, asked by raunak6009, 9 months ago

If a and b are zero of a quadratic polynomial x²-6x+1 then value of (1/a+1/b-ab ) is

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{a}  +  \frac{1}{b}  - ab = 5 }}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies  {x}^{2} - 6x +1 = 0 \\\\ \tt:\implies a\:and\:b\:are\:zeroes \\\\ \red{\underline \bold{To \: Find: }} \\  \tt:   \implies \frac{1}{a}+\frac{1}{b}-ab= ?

• According to given question :

 \tt:  \implies  {x}^{2}  - 6x + 1 = 0 \\  \\  \tt \circ \: a = 1 \\  \\ \tt \circ \: b =  - 6 \\  \\ \tt \circ \: c = 1 \\  \\  \bold{For \: finding \: value} \\  \tt:  \implies  \frac{1}{a}  +  \frac{1}{b}  - ab \\  \\  \tt:  \implies  \frac{b + a -( ab)^{2} }{ab}  \\  \\ \tt:  \implies  \frac{a + b -  {(ab)}^{2} }{ab} -  -  -  -   - (1)  \\  \\  \bold{For \: sum \: of \: zeroes} \\  \tt:  \implies sum \: of \: zeroes =  \frac{ - b}{a}  \\  \\ \tt:  \implies a + b =  \frac{ - ( - 6)}{1}  \\  \\  \green{\tt:  \implies a + b= 6} \\  \\  \bold{For \: product \: of \: zeroes} \\ \tt:  \implies product \: of \: zeroes = \frac{c}{a}  \\  \\ \tt:  \implies ab =  \frac{1}{1}  \\  \\  \green{\tt:  \implies ab  = 1}\\  \\  \text{Putting \: given \: values \: in \:  (1)} \\ \tt:  \implies   \frac{a + b -  {(ab)}^{2} }{ab}  \\  \\ \tt:  \implies  \frac{6  -  {1}^{2} }{1}  \\  \\ \tt:  \implies  \frac{6 - 1}{1}  \\  \\  \green{\tt:  \implies 5} \\  \\   \green{\tt \therefore  \frac{1}{a}  +  \frac{1}{b}  - ab = 5}

Answered by Saby123
18

 \begin{lgathered}\green{\underline \bold{Given: }} \\ \tt: \implies {x}^{2} - 6x +1 = 0 \\\\ \tt:\implies a\:and\:b\:are\:zeroes \\\\ \red{\underline \bold{To \: Find: }} \\ \tt: \implies \frac{1}{a}+\frac{1}{b}-ab= ?\end{lgathered}

Given:

• According to given question :

</p><p>\begin{lgathered}\tt: \implies {x}^{2} - 6x + 1 = 0 \\ \\ \tt \circ \: a = 1 \\ \\ \tt \circ \: b = - 6 \\ \\ \tt \circ \: c = 1 \\ \\ \bold{For \: finding \: value} \\ \tt: \implies \frac{1}{a} + \frac{1}{b} - ab \\ \\ \tt: \implies \frac{b + a -( ab)^{2} }{ab} \\ \\ \tt: \implies \frac{a + b - {(ab)}^{2} }{ab} - - - - - (1) \\ \\ \bold{For \: sum \: of \: zeroes} \\ \tt: \implies sum \: of \: zeroes = \frac{ - b}{a} \\ \\ \tt: \implies a + b = \frac{ - ( - 6)}{1} \\ \\ \green{\tt: \implies a + b= 6} \\ \\ \bold{For \: product \: of \: zeroes} \\ \tt: \implies product \: of \: zeroes = \frac{c}{a} \\ \\ \tt: \implies ab = \frac{1}{1} \\ \\ \green{\tt: \implies ab = 1}\\ \\ \text{Putting \: given \: values \: in \: (1)} \\ \tt: \implies \frac{a + b - {(ab)}^{2} }{ab} \\ \\ \tt: \implies \frac{6 - {1}^{2} }{1} \\ \\ \tt: \implies \frac{6 - 1}{1} \\ \\ \green{\tt: \implies 5} \\ \\ \green{\tt \therefore \frac{1}{a} + \frac{1}{b} - ab = 5}\end{lgathered}

Similar questions